(2012•福州)如圖,從熱氣球C處測(cè)得地面A、B兩點(diǎn)的俯角分別是30°、45°,如果此時(shí)熱氣球C處的高度CD為100米,點(diǎn)A、D、B在同一直線上,則AB兩點(diǎn)的距離是( 。
分析:圖中兩個(gè)直角三角形中,都是知道已知角和對(duì)邊,根據(jù)正切函數(shù)求出鄰邊后,相加求和即可.
解答:解:由已知,得∠A=30°,∠B=45°,CD=100,
∵CD⊥AB于點(diǎn)D.
∴在Rt△ACD中,∠CDA=90°,tanA=
CD
AD
,
∴AD=
CD
tanA
=
100
3
3
=100
3

在Rt△BCD中,∠CDB=90°,∠B=45°
∴DB=CD=100米,
∴AB=AD+DB=100
3
+100=100(
3
+1)米.
故選D.
點(diǎn)評(píng):本題考查了解直角三角形的應(yīng)用,解決本題的關(guān)鍵是利用CD為直角△ABC斜邊上的高,將三角形分成兩個(gè)三角形,然后求解.分別在兩三角形中求出AD與BD的長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•福州)如圖,過(guò)點(diǎn)C(1,2)分別作x軸、y軸的平行線,交直線y=-x+6于A、B兩點(diǎn),若反比例函數(shù)y=
k
x
(x>0)的圖象與△ABC有公共點(diǎn),則k的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•福州)如圖是由4個(gè)大小相同的正方形組合而成的幾何體,其主視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•福州) 如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)C點(diǎn)的切線互相垂直,垂足為D,AD交⊙O于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)若∠B=60°,CD=2
3
,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•福州)如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB=
8-2t
8-2t
,PD=
4
3
t
4
3
t

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說(shuō)明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個(gè)運(yùn)動(dòng)過(guò)程中,求出線段PQ中點(diǎn)M所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案