【題目】在一條直線上依次有A、B、C三個(gè)港口,甲、乙兩船同時(shí)分別從A、B港口出發(fā),沿直線勻速駛向C港,最終到達(dá)C港.設(shè)甲、乙兩船行駛xh)后,與B港的距離分別為y1 y2 km, y1 、y2 x的函數(shù)關(guān)系如圖所示.

1)填空:A、C兩港口間的距離為_______km, _______;

2)求圖中點(diǎn)P的坐標(biāo);

3)若兩船的距離不超過(guò)8km時(shí)能夠相互望見(jiàn),求甲、乙兩船可以相互望見(jiàn)時(shí)x的取值范圍.

【答案】11202;(2)(1,30);(3≤x≤≤x≤

【解析】

1)由甲船行駛的函數(shù)圖象可以看出,甲船從A港出發(fā),0.5h后到達(dá)B港,ah后到達(dá)C港,又由于甲船行駛速度不變,則可以求出a的值;
2)分別求出0.5h后甲乙兩船行駛的函數(shù)表達(dá)式,聯(lián)立即可求解;

3)將該過(guò)程劃分為0≤x≤0.50.5x≤1、x1三個(gè)范圍進(jìn)行討論,得到能夠相望時(shí)x的取值范圍.

解:(1AC兩港口間距離s=30+90=120km),
又由于甲船行駛速度不變,
30÷0.5=60km/h),
a=2h).
2)由點(diǎn)(3,90)求得,y2=30x
當(dāng)0.5x≤2時(shí),設(shè)解析式為y1=ax+c
由點(diǎn)(0.5,0),(2,90)則,

解得:

y1=60x-30,
當(dāng)y1=y2時(shí),60x-30=30x,解得,x=1
此時(shí)y1=y2=30
所以點(diǎn)P的坐標(biāo)為(130).

3)))①當(dāng)x≤0.5時(shí),依題意,(-60x+30+30x≤8.解得,x≥ .不合題意.
②當(dāng)0.5x≤1時(shí),依題意,30x-60x-30≤8
解得,x≥.所以≤x≤1
③當(dāng)1x≤2時(shí),依題意,(60x-30-30x≤8
解得,x≤.所以1x≤
④當(dāng)2x≤3時(shí),甲船已經(jīng)到了而乙船正在行駛,
90-30x≤8,解得x≥ ,
所以,當(dāng) ≤x≤3,甲、乙兩船可以相互望見(jiàn);
綜上所述,當(dāng)≤x≤≤x≤時(shí), 甲、乙兩船可以相互望見(jiàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠BAC65°,D為∠BAC內(nèi)部一點(diǎn),過(guò)DDBABB,DCACC,設(shè)點(diǎn)E、點(diǎn)F分別為AB、AC上的動(dòng)點(diǎn),當(dāng)△DEF的周長(zhǎng)最小時(shí),∠EDF的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長(zhǎng)恰與另一塊等腰直角三角板ODC的斜邊OC的長(zhǎng)相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過(guò)A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長(zhǎng),求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3,

∴AB=OB·tan 30°=3.

∴點(diǎn)A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.

(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng).

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)動(dòng)點(diǎn)M,N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若不變,求出線段EF的長(zhǎng)度;若變化,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,DABC的邊BA延長(zhǎng)線上一點(diǎn),且ADAB,E是邊AC上一點(diǎn),且DEBC.求證:∠DEA=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位同學(xué)玩摸球游戲,準(zhǔn)備了甲、乙兩個(gè)口袋,其中甲口袋中放有標(biāo)號(hào)為1,2,3,4,55個(gè)球,乙口袋中放有標(biāo)號(hào)為1,2,3,44個(gè)球.游戲規(guī)則:甲從甲口袋摸一球,乙從乙口袋摸一球,摸出的兩球所標(biāo)數(shù)字之差(甲數(shù)字乙數(shù)字)大于0時(shí)甲勝,小于0時(shí)乙勝,等于0時(shí)平局.你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)說(shuō)明理由.若不公平,請(qǐng)你對(duì)本游戲設(shè)計(jì)一個(gè)對(duì)雙方都公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在日歷上我們可以發(fā)現(xiàn)其中某些數(shù)滿足一定的規(guī)律.如圖是20188月份的日歷,我們?nèi)我膺x擇其中所示的方框部分,將方框部分中的4個(gè)位置的數(shù)交叉相乘,再相減,如8×169×15=7,19×2720×26=7,不難發(fā)現(xiàn)結(jié)果都是-7.

1)請(qǐng)你再選擇一組數(shù)按上面的方式計(jì)算,看看是否符合這個(gè)規(guī)律.并用你擅長(zhǎng)的表達(dá)方式描述這個(gè)規(guī)律.

2)請(qǐng)你利用整式的運(yùn)算對(duì)以上的規(guī)律加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD∽四邊形A′B′C′D′,ABBCCDDA=201598,四邊形A′B′C′D′的周長(zhǎng)為26,求四邊形A′B′C′D′各邊的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線PT與⊙O相交于點(diǎn)T,直線PO與⊙O相交于A,B兩點(diǎn).已知∠PTA=∠B.

(1)求證:PT是⊙O的切線;

(2)若PT=6,PA=4,求⊙O的半徑;

(3)若PT=TB=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,

(1)求k的值;

(2)根據(jù)圖象直接寫(xiě)出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;

(3)過(guò)原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案