【題目】實驗探究:
(1)如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MN與BM的數(shù)量關(guān)系,寫出折疊方案,并結(jié)合方案證明你的結(jié)論.
【答案】(1)猜想:∠MBN=30°,理由見解析;(2)結(jié)論:MN=BM.折紙方案及證明見解析.
【解析】試題分析:(1)猜想:∠MBN=30°.只要證明△ABN是等邊三角形即可;
(2)結(jié)論:MN=BM.折紙方案:如圖,折疊△BMN,使得點N落在BM上O處,折痕為MP,連接OP.由折疊可知△MOP≌△MNP,只要證明△MOP≌△BOP,即可推出MO=BO=BM;
試題解析:(1)猜想:∠MBN=30°.
理由:如圖1中,連接AN,∵直線EF是AB的垂直平分線,
∴NA=NB,
由折疊可知,BN=AB,
∴AB=BN=AN,
∴△ABN是等邊三角形,
∴∠ABN=60°,
∴NBM=∠ABM=∠ABN=30°.
(2)結(jié)論:MN=BM.
折紙方案:如圖2中,折疊△BMN,使得點N落在BM上O處,折痕為MP,連接OP.
理由:由折疊可知△MOP≌△MNP,
∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,
∠MOP=∠MNP=90°,
∴∠BOP=∠MOP=90°,
∵OP=OP,
∴△MOP≌△BOP,
∴MO=BO=BM,
∴MN=BM.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)
閱讀材料:
如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為P.
求證:S四邊形ABCD=
證明:AC⊥BD→
∴S四邊形ABCD=S△ACD+S△ACB=
=
解答問題:
(1)上述證明得到的性質(zhì)可敘述為_______________________________________.
(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對角線AC⊥BD且相交于點P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(-5,0),B(-3,0),點C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點P從點Q(4,0)出發(fā),沿x軸向左以每秒1個單位長度的速度運動,運動時時間t秒.
(1)求點C的坐標(biāo);
(2)當(dāng)∠BCP=15°時,求t的值;
(3)以點P為圓心,PC為半徑的⊙P隨點P的運動而變化,當(dāng)⊙P與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來霧霾天氣給人們的生活帶來很大影響,空氣質(zhì)量問題倍受人們關(guān)注.某單位計劃在室內(nèi)安裝空氣凈化裝置,需購進A、B兩種設(shè)備.每臺B種設(shè)備價格比每臺A種設(shè)備價格多0.7萬元,花3萬元購買A種設(shè)備和花7.2萬元購買B種設(shè)備的數(shù)量相同.
(1)求A種、B種設(shè)備每臺各多少萬元?
(2)根據(jù)單位實際情況,需購進A、B兩種設(shè)備共20臺,總費用不高于15萬元,求A種設(shè)備至少要購買多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某實驗學(xué)校準(zhǔn)備在“十一”黃金周組織部分教師到陜西安康旅游,現(xiàn)聯(lián)系了甲、乙兩旅行社,兩家旅行社報價均為400元/人,同時兩旅行社對10人以上的團體推出了優(yōu)惠舉措:甲旅行社對每位游客七五折優(yōu)惠;乙旅行社是免去一位帶隊老師的費用,其余的八折優(yōu)惠①求人數(shù)為多少時,兩家旅行社的收費相同?②請你通過計算說明:旅游人數(shù)在什么范圍時選擇甲旅行社費用較少?旅游人數(shù)在什么范圍時選擇乙旅行社的費用較少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com