【題目】嘗試探究:如圖,在中,,,E,F分別是BC,AC上的點(diǎn),且,則______;
類比延伸:如圖,若將圖中的繞點(diǎn)C順時(shí)針旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,值是否發(fā)生變化?請(qǐng)僅就圖的情形寫出推理過(guò)程;
拓展運(yùn)用:若,,在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F三點(diǎn)在同一直線上時(shí),請(qǐng)直接寫出此時(shí)線段AF的長(zhǎng).
【答案】(1);(2)不變化,理由見(jiàn)解析;(3)AF的長(zhǎng)為3-或3+.
【解析】
(1)根據(jù)直角三角形30°角的性質(zhì)即可解決問(wèn)題;
(2)只要證明△ACF∽△BCE,可得 ,由此即可解決問(wèn)題;
(3)分兩種情形畫(huà)出圖形分別解決問(wèn)題即可;
(1)如圖①中,
∵在△ABC中,∠ABC=90°,∠A=30°,EF∥AB,
∴∠CFE=∠A=30°,
∴CF=EC,AC=BC,
∴AF=AC-CF=BC-EC=(BC-EC)=BE,
∴ =,
故答案為.
(2)不變化,
理由如下:如圖②中,
由(1)及旋轉(zhuǎn)的性質(zhì)知,∠CFE=∠CAB=30°.
∠FCE=∠ACB=90°.
在Rt△CEF中,tan∠CEF==,
在Rt△CBA中,tan∠ABC= =,
∴ ,
又∵∠FCE=∠ACB=90°,∠FCA+∠ACE=∠FCE,
∠ACE+∠BCE=∠ACB,
∴∠FCA=∠ECB.
∴△ACF∽△BCE,
∴=.
(3)①如圖,由△ECB∽△FCA,可得:AF:BE=CF:EC=.
設(shè)BE=a,則AF=a,
∵B,E,F共線,
∴∠BEC=∠AFC=120°,
∵∠EFC=30°,
∴∠AFB=90°,
在Rt△ABF中,AB=2BC=6,AF=a,BF=EF+BE=4+a,
∴(a)2+(4+a)2=62,
∴a=-1+或-1-(舍棄),
∴AF=a=3-
②如圖,當(dāng)E,B,F共線時(shí),同法可證:AF=BE,∠AFB=90°,
在Rt△ABF中,62=(4-a)2+(a)2,
解得a=1+或1-(舍棄),
∴AF=a=3+.
AF的長(zhǎng)為3-或3+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點(diǎn)P,Q運(yùn)動(dòng)過(guò)程中,△APQ可能是直角三角形嗎?請(qǐng)說(shuō)明理由;
(3)點(diǎn)M在拋物線上,且△AOM的面積與△AOC的面積相等,求出點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線,四邊形ADBE是平行四邊形.
(1)求證:四邊形ADBE是矩形;
(2)求矩形ADBE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 AB,CD是的兩條弦,直線AB,CD互相垂直,垂足為點(diǎn)E,連接AD,過(guò)點(diǎn)B作,垂足為點(diǎn)F,直線BF交直線CD于點(diǎn)G.
(1)如圖1當(dāng)點(diǎn)E在外時(shí),連接,求證BE平分∠GBC;
(2)如圖2當(dāng)點(diǎn)E在內(nèi)時(shí),連接AC,AG,求證:AC=AG
(3)在(2)條件下,連接BO,若BO平分,求線段EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=1,記∠ABC=α,點(diǎn)D為射線BC上的動(dòng)點(diǎn),連接AD,將射線DA繞點(diǎn)D順時(shí)針旋轉(zhuǎn)α角后得到射線DE,過(guò)點(diǎn)A作AD的垂線,與射線DE交于點(diǎn)P,點(diǎn)B關(guān)于點(diǎn)D的對(duì)稱點(diǎn)為Q,連接PQ.
(1)當(dāng)△ABD為等邊三角形時(shí),
①依題意補(bǔ)全圖1;
②PQ的長(zhǎng)為 ;
(2)如圖2,當(dāng)α=45°,且BD=時(shí),求證:PD=PQ;
(3)設(shè)BC=t,當(dāng)PD=PQ時(shí),直接寫出BD的長(zhǎng).(用含t的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,∠ABD=90°,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:四邊形BECD是矩形;
(2)連接DE交BC于點(diǎn)F,連接AF,若CE=2,∠DAB=30°,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】M(﹣1,),N(1,)是平面直角坐標(biāo)系xOy中的兩點(diǎn),若平面內(nèi)直線MN上方的點(diǎn)P滿足:45°≤∠MPN≤90°,則稱點(diǎn)P為線段MN的可視點(diǎn).
(1)在點(diǎn),,,A4(2,2)中,線段MN的可視點(diǎn)為 ;
(2)若點(diǎn)B是直線y=x上線段MN的可視點(diǎn),求點(diǎn)B的橫坐標(biāo)t的取值范圍;
(3)直線y=x+b(b≠0)與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,若線段CD上存在線段MN的可視點(diǎn),直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA與⊙O相切于點(diǎn)A,過(guò)點(diǎn)A作AB⊥OP,垂足為C,交⊙O于點(diǎn)B.連接PB,AO,并延長(zhǎng)AO交⊙O于點(diǎn)D,與PB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:PB是⊙O的切線;
(2)若OC=3,AC=4,求PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多邊形ABCDEF中,AB=AF,DC=DE,BC=EF,∠ABC=∠BCD.請(qǐng)僅用無(wú)刻度的直尺,分別按下列要求畫(huà)圖.
(1)在圖①中,畫(huà)出一個(gè)以BC為邊的矩形;
(2)在圖②中,若多邊形ABCDEF是正六邊形,試在AF上畫(huà)出點(diǎn)M,使得AM=AF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com