點(diǎn)D是⊙O的直徑CA延長線上一點(diǎn),點(diǎn)B在⊙O上,∠DBA=∠C.
(1)請判斷BD所在的直線與⊙O的位置關(guān)系,并說明理由;
(2)若AD=AO=1,求圖中陰影部分的面積(結(jié)果保留根號(hào)).

【答案】分析:(1)BD所在的直線與圓O相切,理由為:連接OB,由CA為圓O的直徑,利用直角所對的圓周角為直角,得到∠ABC=90°,再由OB=OC,利用等邊對等角得到一對角相等,再由∠DBA=∠C,得到∠DBA+∠OBA=∠OBC+∠OBA=∠ABC=90°,即BD垂直于半徑OB,可得出BD所在的直線為圓O的切線;
(2)由BD為圓O的切線,得到三角形BDO為直角三角形,根據(jù)OB及OD的長,利用勾股定理求出BD的長,進(jìn)而由直角邊BD與BO乘積的一半求出直角三角形BDO的面積,再由BO為DO的一半求出∠D=30°,進(jìn)而得出∠AOB=60°,利用扇形的面積公式求出扇形AOB的面積,由直角三角形BDO的面積-扇形AOB的面積,即可求出陰影部分的面積.
解答:(1)BD所在的直線與⊙O相切,理由如下:
證明:連接OB,
∵CA是⊙O的直徑,
∴∠ABC=90°,
∵OB=OC,
∴∠OBC=∠C,
∵∠DBA=∠C,
∴∠DBA+∠OBA=∠OBC+∠OBA=∠ABC=90°,
∴OB⊥BD,
∵點(diǎn)B在⊙O上,
∴BD所在的直線與⊙O相切;
(2)解:∵∠DBO=90°,AD=OA=OB,
∴DO=2BO,
∴∠D=30°,
∴∠AOB=60°,
∵S==,S△OBD=OB•BD=×1×=
∴S=S△OBD-S=-
點(diǎn)評(píng):此題考查了切線的判定,等腰三角形的判定與性質(zhì),扇形的面積求法,含30°直角三角形的性質(zhì)與判定,利用了轉(zhuǎn)化及等量代換的思想,其中切線的判定方法有兩種:有點(diǎn)連接證明垂直;無點(diǎn)作垂線證明垂線段等于半徑.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,點(diǎn)D是⊙O的直徑CA延長線上一點(diǎn),點(diǎn)B在⊙O上,且OA=AB=AD.
(1)求證:BD是⊙O的切線;
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且BE=8,tan∠BFA=
5
2
,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
選做題:甲:已知關(guān)于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求證:不論m取何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根x1、x2滿足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如圖,點(diǎn)D是⊙O的直徑CA延長線上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線.
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為8,cos∠BFA=
2
3
,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

點(diǎn)D是⊙O的直徑CA延長線上一點(diǎn),點(diǎn)B在⊙O上,BD是⊙O的切線,且AB=AD.
(1)求證:點(diǎn)A是DO的中點(diǎn).
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為8,cos∠BFA=
23
,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)D是⊙O的直徑CA延長線上一點(diǎn),點(diǎn)B在⊙O上,且∠D=∠C=30°.
(1)求證:BD是⊙O的切線.
(2)分別過B、F兩點(diǎn)作DC的垂線,垂足分別為M、N,且CN:CM=2:3若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,△ABC的面積為12cm2,cos∠EFC=
23
,求△BFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)D是⊙O的直徑CA延長線上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線.
(2)若點(diǎn)E是劣弧
AB
上一點(diǎn),AE與BC相交于點(diǎn)F,且∠ABE=105°,BD=2
3
,求出AE的值.

查看答案和解析>>

同步練習(xí)冊答案