【題目】手機微信推出了搶紅包游戲,它有多種玩法,其中一種為拼手氣紅包,用戶設(shè)定好總金額以及紅包個數(shù)后,可以生成不等金額的紅包.現(xiàn)有一用戶發(fā)了三個拼手氣紅包,總金額為3元,隨機被甲、乙、丙三人搶到.

(1)判斷下列事件中,哪些是確定事件,哪些是不確定事件?

①丙搶到金額為1元的紅包;

②乙搶到金額為4元的紅包

③甲、乙兩人搶到的紅包金額之和一定比丙搶到的紅包金額多;

(2)記金額最多、居中、最少的紅包分別為AB,C

①求出甲搶到紅包A的概率;

②若甲沒搶到紅包A,則乙能搶到紅包A的概率又是多少?

【答案】(1)事件①,③是不確定事件,事件②是確定事件;(2)①;

【解析】

(1)直接利用確定事件必然事件和不可能事件統(tǒng)稱為確定事件以及不確定事件概率論中把在一定條件下可能發(fā)生的事件叫可能事件,也稱不確定事件的定義分析即可得出結(jié)論;(2)①直接利用概率公式得出結(jié)論;②因為只剩下兩個紅包,故可得乙能搶到紅包A的概率.

解:(1)事件①③是不確定事件,事件②是確定事件;

(2)①因為有,三個紅包,且搶到每一個紅包的可能性相同,

所以甲搶到紅包的概率;

②因為只剩下兩個紅包,且搶到每一個紅包的可能性相同,

所以乙搶到紅包的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.

(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是___個單位長度;△AOC△BOD關(guān)于直線對稱,則對稱軸是___;△AOC繞原點O順時針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是___度;

(2)連結(jié)AD,交OC于點E,求∠AEO的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為體現(xiàn)社會對教師的尊重,教師節(jié)這天上午,出租車司機小王在東西走向的公路上免費接送老師.如果規(guī)定向東為正,向西為負(fù),出租車的行程如下.(單位:千米)+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17

(1)當(dāng)最后一名老師到達目的地時,小王距離開始接送第一位老師之前的地點的距離是多少?

(2)若出租車的耗油量為0.4/千米,這天上午出租車共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某手機經(jīng)銷商計劃同時購進一批甲、乙兩種型號的手機,若購進2部甲型號手機和1部乙型號手機,共需要資金2800元;若購進3部甲型號手機和2部乙型號手機,共需要資金4600

(1) 求甲、乙型號手機每部進價為多少元?

(2) 該店計劃購進甲、乙兩種型號的手機銷售,預(yù)計用不多于1.8萬元且不少于1.74萬元的資金購進這兩部手機共20臺,請問有幾種進貨方案?請寫出進貨方案

(3) 售出一部甲種型號手機,利潤率為40%,乙型號手機的售價為1280為了促銷,公司決定每售出一臺乙型號手機,返還顧客現(xiàn)金m元,而甲型號手機售價不變,要使(2)中所有方案獲利相同,求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠C=90°,AC=8,F(xiàn)AB邊上的中點,點D,E分別在AC、BC邊上運動,且保持AD=CE,連接DE,DF,EF,在此運動過程中,下列結(jié)論:(1)DFE是等腰直角三角形;(2)DE長度的最小值為4;(3)四邊形CDFE的面積保持不變;(4)CDE面積的最大值是4.正確的結(jié)論是(  )

A. (1)(2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (2)(3)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形中,,,,,上一點,延長線上一點,且

(1)在圖1中,求證:

(2)在圖1中,若點上且,試猜想、之間的數(shù)量關(guān)系并證明.

(3)運用(1)(2)解答中所積累的經(jīng)驗知識,完成下題:如圖2,在四邊形中,,上,,且,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+x的對稱軸為直線x=2,頂點為A.點P為拋物線對稱軸上一點,連結(jié)OA、OP.當(dāng)OA⊥OP時,P點坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解答后面的問題。

我們知道方程有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解。例:由,得,( 、為正整數(shù))

則有.又為正整數(shù),則為整數(shù).

由2與3互質(zhì),可知: 為3的倍數(shù),從而,代入.

的正整數(shù)解為

問題:(1)若為自然數(shù),則滿足條件的值有_____________

(2)請你寫出方程的所有正整數(shù)解:_________________________

(3)若,請用含的式子表示,并求出它的所有整數(shù)解。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題

(1)﹣6﹣8+5﹣(﹣2);

(2)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);

(3)

(4)()×(﹣24);

(5)(﹣3.59)×()﹣2.41×()+6×();

(6)﹣23+|2﹣3|﹣2×(﹣1)2014

查看答案和解析>>

同步練習(xí)冊答案