【題目】如圖,有一只小鳥在一棵高13m的大樹樹梢上捉蟲子,它的伙伴在離該樹12m,高8m的一棵小樹樹梢上發(fā)出友好的叫聲,它立刻以2m/s的速度飛向小樹樹梢,它最短要飛多遠(yuǎn)?這只小鳥至少幾秒才可能到達(dá)小樹和伙伴在一起?

【答案】6.5s.

【解析】試題分析:過BBCAD,垂足為點(diǎn)C,利用勾股定理求出斜邊的值是13m,也就是兩樹樹梢之間的最短距離是13m,進(jìn)而可求得最短時間

試題解析:

解:過BBCAD,垂足為點(diǎn)C如圖所示:

根據(jù)題意,得

ACADBE=13-8=5m,BC=12m.

根據(jù)勾股定理,得

AB==13m.

則小鳥所用的時間是13÷2=6.5(s).

答:這只小鳥最短要飛13m,至少6.5秒才可能到達(dá)小樹和伙伴在一起.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線m0與x軸交于A、B兩點(diǎn).

(1)求證:拋物線的對稱軸在y軸的左側(cè);

(2)若(O為坐標(biāo)原點(diǎn)),求拋物線的解析式;

(3)設(shè)拋物線與y軸交于點(diǎn)C,若ABC是直角三角形.求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)P(t,0)在x軸上,B是線段PA的中點(diǎn).將線段PB繞著點(diǎn)P順時針方向旋轉(zhuǎn)90°,得到線段PC,連結(jié)OB、BC.

(1)判斷PBC的形狀,并簡要說明理由;

(2)當(dāng)t0時,試問:以P、O、B、C為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出相應(yīng)的t的值?若不能,請說明理由;

(3)當(dāng)t為何值時,AOP與APC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,連接

)求證:是等邊三角形.

)點(diǎn)在線段的延長線上,連接,作的垂直平分線,垂足為點(diǎn),并與軸交于點(diǎn),分別連接、

①如圖,若,直接寫出的度數(shù).

②若點(diǎn)在線段的延長線上運(yùn)動(與點(diǎn)不重合),的度數(shù)是否變化?若變化,請說明理由;若不變,求出的度數(shù).

)在()的條件下,若點(diǎn)從點(diǎn)出發(fā)在的延長線上勻速運(yùn)動,速度為每秒個單位長度,交于點(diǎn),設(shè)的面積為的面積為,,運(yùn)動時間為秒時.求關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿∠CAB的角平分線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1:y1=x+m與y軸交于點(diǎn)A(0,6),直線l2:y2=kx+1分別與x軸交于點(diǎn)B(-2,0),與y軸交于點(diǎn)C.兩條直線相交于點(diǎn)D,連接AB.

1)求兩直線交點(diǎn)D的坐標(biāo);

2)求ABD的面積;
3)根據(jù)圖象直接寫出y1y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點(diǎn)B,E,C,F在一條直線上,ABDF,ACDE,AD.

(1)求證:ACDE

(2)BF21,EC9,BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鎮(zhèn)水庫的可用水量為12000萬m3,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬人20年的用水量.為實(shí)施城鎮(zhèn)化建設(shè),新遷入了4萬人后,水庫只能夠維持居民15年的用水量.

(1)問:年降水量為多少萬m3?每人年平均用水量多少m3?

(2)政府號召節(jié)約用水,希望將水庫的使用年限提高到25年.則該鎮(zhèn)居民人均每年需節(jié)約多少m3水才能實(shí)現(xiàn)目標(biāo)?

(3)某企業(yè)投入1000萬元設(shè)備,每天能淡化5000m3海水,淡化率為70%.每淡化1m3海水所需的費(fèi)用為1.5元,政府補(bǔ)貼0.3元.企業(yè)將淡化水以3.2元/m3的價格出售,每年還需各項支出40萬元.按每年實(shí)際生產(chǎn)300天計算,該企業(yè)至少幾年后能收回成本(結(jié)果精確到個位)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖,過y軸上任意一點(diǎn)p,作x軸的平行線,分別與反比例函數(shù)y=和y=的圖象交于A點(diǎn)和B點(diǎn)若C為x軸上任意一點(diǎn),連接AC、BC,則ABC的面積為

查看答案和解析>>

同步練習(xí)冊答案