如圖,在△ABC中,DEAB分別交AC,BC于點(diǎn)D,E,若AD=2,CD=3,則△CDE與△CAB的面積的比為        

分析:根據(jù)AD=2,CD=3,得AC=5, = ,再根據(jù)DE∥AB,得△CDE∽△CAB,最后根據(jù)△CDE與△CAB的面積的比等于相似比的平方即可得出答案.
解;∵AD=2,CD=3,
∴AC=2+3=5,
= ,
∵DE∥AB,
∴△CDE∽△CAB,
∴△CDE與△CAB的面積的比為=(2=
故答案為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)提出問(wèn)題:如圖,有一塊分布均勻的等腰三角形蛋糕(,且),在蛋糕的邊緣均勻分布著巧克力,小明和小華決定只切一刀將這塊蛋糕平分(要求分得的蛋糕和巧克力質(zhì)量都一樣).
背景介紹:這條分割直線(xiàn)即平分了三角形的面積,又平分了三角形的周長(zhǎng),我們稱(chēng)這條線(xiàn)為三角 形的“等分積周線(xiàn)”.
嘗試解決:
 (1)小明很快就想到了一條分割直線(xiàn),而且用尺規(guī)作圖作出.請(qǐng)你幫小明在圖1中畫(huà)出這條“等分積周線(xiàn)”,從而平分蛋糕.
(2) 小華覺(jué)得小明的方法很好,所以自己模仿著在圖1中過(guò)點(diǎn)C畫(huà)了一條直線(xiàn)CDAB于點(diǎn)D.你覺(jué)得小華會(huì)成功嗎?如能成功,說(shuō)出確定的方法;如不能成功,請(qǐng)說(shuō)明理由.
(3)通過(guò)上面的實(shí)踐,你一定有了更深刻的認(rèn)識(shí).請(qǐng)你解決下面的問(wèn)題:若ABBC=5 cm,AC=6 cm,請(qǐng)你找出△ABC的所有“等分積周線(xiàn)”,并簡(jiǎn)要的說(shuō)明確定的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在中,,點(diǎn)邊的中點(diǎn),點(diǎn)上,連結(jié)并延長(zhǎng)到點(diǎn),使,點(diǎn)在線(xiàn)段上,且

小題1:(1)如圖,當(dāng)時(shí),求證:;
小題2:(2)如圖,當(dāng)時(shí),則線(xiàn)段之間的數(shù)量關(guān)系為      ;

小題3:(3)在(2)的條件下,延長(zhǎng),使,連接,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正方形MNPQ內(nèi)接于△ABC(如圖所示),若△ABC的面積為9cm2,BC=6cm,求該正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,四邊形ABCD是平行四邊形,F(xiàn)是AB上一點(diǎn),連接DF并延長(zhǎng)交CB的延長(zhǎng)線(xiàn)于E.

求證:AD:AF=CE:AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在中,.若動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線(xiàn)段運(yùn)動(dòng)到點(diǎn)為止,運(yùn)動(dòng)速度為每秒2個(gè)單位長(zhǎng)度.過(guò)點(diǎn)于點(diǎn),設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,的長(zhǎng)為

小題1:(1)求出關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
小題2:(2)當(dāng)為何值時(shí),的面積有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我們知道三角形三條中線(xiàn)的交點(diǎn)叫做三角形的重心.經(jīng)過(guò)證明我們可得三角形重心具備下面的性質(zhì): 重心到頂點(diǎn)的距離與重心到該頂點(diǎn)對(duì)邊中點(diǎn)的距離之比為2﹕1.請(qǐng)你用此性質(zhì)解決下面的問(wèn)題.
已知:如圖,點(diǎn)為等腰直角三角形的重心,,直線(xiàn)過(guò)點(diǎn),過(guò) 三點(diǎn)分別作直線(xiàn)的垂線(xiàn),垂足分別為點(diǎn).              
<1>當(dāng)直線(xiàn)平行時(shí)(圖1),請(qǐng)你猜想線(xiàn)段三者之間的數(shù)量關(guān)系并證明;
<2>當(dāng)直線(xiàn)繞點(diǎn)旋轉(zhuǎn)到與不平行時(shí),分別探究在圖2、圖3這兩種情況下,上述結(jié)論是否還成立?若成立,請(qǐng)給予證明;若不成立,線(xiàn)段三者之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的結(jié)論,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如下圖,在平面直角坐標(biāo)系中,以P (4,6)為位似中心,把△ABC縮小得到△DEF,若變換后,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D、E,則點(diǎn)C的對(duì)應(yīng)點(diǎn)F的坐標(biāo)應(yīng)為(   ).
A.(4,2)B.(4,4)C.(4,5)D.(5,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC∽△A′B′C′,AB=3,A′B′=4.若SABC=18,則SABC的值為( 。
A.B.C.24D.32

查看答案和解析>>

同步練習(xí)冊(cè)答案