(本題滿分12分)如圖,直線AB分別x,y軸正半軸相交于A(a,0)和B(0,b),直線交于y軸與點(diǎn)E,交AB于點(diǎn)F

(1)當(dāng)a=6,b=6時(shí),求四邊形EOAF的面積
(2)若F為線段AB的中點(diǎn),且AB=時(shí),求證:∠BEF=∠BAO

(1)解:根據(jù)題意得:E(0,3)………………1分
∵A(6,0),B(0,6)
求得直線AB的函數(shù)關(guān)系式是y=-x+6………………2分
直線EF 和直線AB交于點(diǎn)F,方程組的解是
∴F(2,4)……………………………………………………………………3分
=
=……………………………………………4分
(2)解:∵F為線段AB的中點(diǎn),由三角形中位線定理得F(a, b)………………………………………5分
又 F在直線EF: 上,
∴×a+3=b………………………………………………………………6分
a="2b-12" ………………………①
又∵AB=
∴a+b=()…… ……②  ……………………………………7分
∴(2b-12)+ b=80
整理得:5b-48b+64=0
解得b1=,   b2="8"
當(dāng)b=時(shí),a<0,不合題意∴b=(舍去) …………………………………8分
當(dāng)b=8時(shí),a=4
∴A(4,0)B(0,8)……………………………………………………………9分
∴OE="3, " BE=5
連接EA,在RT△OAE中,OE=3,OA=4,∴EA="5"
∴EA=BE=5
∴△BEA是等腰三角形……………………………………………………10分
又F為線段AB的中點(diǎn)
∴EF⊥AB …………………………………………………………………11分
∴∠BEF=90°-∠EBF
∠BAO=90°-∠OBA                                       
∠EBF=∠OBA
∴∠BEF=∠BAO ………………………………………………………12分                                                  

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)M作直線lAD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)時(shí),求線段的長(zhǎng);

(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:解答題

(本題滿分12分)如圖,在邊長(zhǎng)為2的正方形ABCD中,PAB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQt(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)MN,過QQEAB于點(diǎn)E,過MMFBC于點(diǎn)F
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接PM、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市徐匯區(qū)中考一模數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖,的頂點(diǎn)AB在二次函數(shù)的圖像上,又點(diǎn)A、B[分別在軸和軸上,ABO

1.(1)求此二次函數(shù)的解析式;(4分)

2.

 

 
(2)過點(diǎn)交上述函數(shù)圖像于點(diǎn),

點(diǎn)在上述函數(shù)圖像上,當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).(8分)

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題

(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線交于A、D兩點(diǎn)。

⑴直接寫出A、C兩點(diǎn)坐標(biāo)和直線AD的解析式;

⑵如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(廣西桂林) 題型:解答題

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,,.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)M作直線lAD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)時(shí),求線段的長(zhǎng);

(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案