【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖③所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線x=2,則下 列結(jié)論中正確的個(gè)數(shù)有( ) ①4a+b=0;
②9a+3b+c<0;
③若點(diǎn)A(﹣3,y1),點(diǎn)B(﹣ ,y2),點(diǎn)C(5,y3)在該函數(shù)圖象上,則y1<y3<y2;
④若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 .
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】C
【解析】解:由拋物線的對(duì)稱(chēng)軸為x=2可得﹣ =2,即4a+b=0,故①正確; 由拋物線的對(duì)稱(chēng)性知x=0和x=4時(shí),y>0,
則x=3時(shí),y=9a+3b+c>0,故②錯(cuò)誤;
∵拋物線的開(kāi)口向下,且對(duì)稱(chēng)軸為x=2,
∴拋物線上離對(duì)稱(chēng)軸水平距離越小,函數(shù)值越大,
∵點(diǎn)A到x=2的水平距離為5,點(diǎn)B到對(duì)稱(chēng)軸的水平距離為2.5,點(diǎn)C到對(duì)稱(chēng)軸的水平距離為3,
∴y1<y3<y2 , 故③正確;
令y=a(x+1)(x﹣5),
則拋物線y=a(x+1)(x﹣5)與y=ax2+bx+c形狀相同、開(kāi)口方向相同,且與x軸的交點(diǎn)為(﹣1,0)、(3,0),
函數(shù)圖象如圖所示,
由函數(shù)圖象可知方程a(x+1)(x﹣5)=﹣3的兩根即為拋物線y=a(x+1)(x﹣5)與直線y=﹣3交點(diǎn)的橫坐標(biāo),
∴x1<﹣1<5<x2 , 故④正確;
故選:C.
【考點(diǎn)精析】掌握二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標(biāo)軸的交點(diǎn)是解答本題的根本,需要知道二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c);一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題
(1) ﹣(2017﹣π)0﹣4cos45°+(﹣3)2
(2)先化簡(jiǎn),再求代數(shù)式 ﹣ ÷ 的值,其中a=3tan30°﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD,AB=6,點(diǎn)E在邊CD上,CE=2DE,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y= x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣4,0)、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱(chēng)軸與x軸交于點(diǎn)H,過(guò)點(diǎn)H的直線m交拋物線于P、Q兩點(diǎn),其中點(diǎn)P位于第二象限,點(diǎn)Q在y軸的右側(cè).
(1)求D點(diǎn)坐標(biāo);
(2)若∠PBA= ∠OBC,求點(diǎn)P的坐標(biāo);
(3)設(shè)PQ的中點(diǎn)為M,點(diǎn)N在拋物線上,則以DP為對(duì)角線的四邊形DMPN能否為菱形?若能,求出點(diǎn)N的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解九年級(jí)學(xué)生體能狀況,從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí),并依據(jù)測(cè)試成績(jī)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖;
(1)這次抽取的學(xué)生的人數(shù)是;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中C等級(jí)所對(duì)應(yīng)的圓心角為度;
(4)該校九年級(jí)學(xué)生有1500人,請(qǐng)你估計(jì)其中A等級(jí)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別過(guò)點(diǎn)Pi(i,0)(i=1、2、…、n)作x軸的垂線,交 的圖象于點(diǎn)Ai , 交直線 于點(diǎn)Bi . 則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明所在的學(xué)校加強(qiáng)學(xué)生的體育鍛煉,準(zhǔn)備從某體育用品商店一次購(gòu)買(mǎi)若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買(mǎi)2個(gè)籃球和3個(gè)足球共需310元,購(gòu)買(mǎi)5個(gè)籃球和2個(gè)足球共需500元.
(1)每個(gè)籃球和足球各需多少元?
(2)根據(jù)實(shí)際情況,需從該商店一次性購(gòu)買(mǎi)籃球和足球功60個(gè),要求購(gòu)買(mǎi)籃球和足球的總費(fèi)用不超過(guò)4000元,那么最多可以購(gòu)買(mǎi)多少個(gè)籃球?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com