【題目】 RtABC 中,∠ACB=90°OAB邊上的一點(diǎn),且,點(diǎn)DAC邊上的動(dòng)點(diǎn)不與點(diǎn)A,C 重合),將線段OD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°BC于點(diǎn)E.

1)如圖1,若OAB邊中點(diǎn),DAC邊中點(diǎn),求的值;

2)如圖2,若OAB邊中點(diǎn),D不是AC邊的中點(diǎn),求的值。

【答案】1;(2.

【解析】試題分析: OAB邊中點(diǎn),DAC邊中點(diǎn),得出四邊形CDOE是矩形,根據(jù),得出 .

根據(jù)題意將圖2補(bǔ)全即可, 分別取的中點(diǎn) 連接 要求

的值,需證明

試題解析:(1)如圖1,OAB邊中點(diǎn),DAC邊中點(diǎn),

∴四邊形CDOE是矩形,

∴∠AOD=B,

,即,

因此,本題正確答案是: ;

如圖,分別取的中點(diǎn) 連接

邊中點(diǎn),

,

,

,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBCAD3,BC8,EBC的中點(diǎn),點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度從A點(diǎn)出發(fā),沿AD向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q同時(shí)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間t__________秒時(shí),以點(diǎn)P,Q,E,D為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,BC=2ABMAD的中點(diǎn),CEAB,垂足為E,求證:∠DME=3AEM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)投入13 800元資金購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)和銷售價(jià)如表所示:

類別/單價(jià)

成本價(jià)

銷售價(jià)(/)

24

36

33

48

(1)該商場(chǎng)購進(jìn)甲、乙兩種礦泉水各多少箱?

(2)全部售完500箱礦泉水,該商場(chǎng)共獲得利潤(rùn)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,小明利用同弧所對(duì)的圓周角及圓心角的性質(zhì)探索了一些問題,下面請(qǐng)你和小明一起進(jìn)入探索之旅.

問題情境:

)如圖, 中, , ,則的外接圓的半徑為__________

操作實(shí)踐:

)如圖,在矩形中,請(qǐng)利用以上操作所獲得的經(jīng)驗(yàn),在矩形內(nèi)部用直尺與圓規(guī)作出一點(diǎn).點(diǎn)滿足: ,且

(要求:用直尺與圓規(guī)作出點(diǎn),保留作圖痕跡.)

遷移應(yīng)用:

)如圖,在平面直角坐標(biāo)系的第一象限內(nèi)有一點(diǎn),坐標(biāo)為.過點(diǎn)軸, 軸,垂足分別為,若點(diǎn)在線段上滑動(dòng)(點(diǎn)可以與點(diǎn)重合),發(fā)現(xiàn)使得的位置有兩個(gè),則的取值范圍為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機(jī),從廠家購進(jìn)了AB兩種型號(hào)家用凈水器共160臺(tái),A型號(hào)家用凈水器進(jìn)價(jià)是150/臺(tái),B型號(hào)家用凈水器進(jìn)價(jià)是350/臺(tái)購進(jìn)兩種型號(hào)的家用凈水器共用去36000

1)求A、B兩種型號(hào)家用凈水器各購進(jìn)了多少臺(tái)

2)為使每臺(tái)B型號(hào)家用凈水器的毛利潤(rùn)是A型號(hào)的2,且保證售完這160臺(tái)家用凈水器的毛利潤(rùn)不低于11000,求每臺(tái)A型號(hào)家用凈水器的售價(jià)至少是多少元?(注毛利潤(rùn)=售價(jià)﹣進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對(duì)角線AC剪開,再把ACD沿CA方向平移得到ACD

1)證明AAD′≌△CCB

2)若ACB=30°,試問當(dāng)點(diǎn)C在線段AC上的什么位置時(shí),四邊形ABCD是菱形,并請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(1,1),點(diǎn)Bx軸正半軸上,點(diǎn)D在第三象限的雙曲線y上,過點(diǎn)CCEx軸交雙曲線于點(diǎn)E,則CE的長(zhǎng)為( )

A. B. C. 3.5D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案