【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),已知二次函數(shù)的圖象經(jīng)過點(diǎn)、和點(diǎn).
求、兩點(diǎn)坐標(biāo);
求該二次函數(shù)的關(guān)系式
若拋物線的對稱軸與軸的交點(diǎn)為點(diǎn),則在拋物線的對稱軸上是否存在點(diǎn),使是以為腰的等腰三角形?如果存在,直接寫出點(diǎn)的坐標(biāo);如果不存在,請說明理由;
點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線與拋物線相交于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形的面積最大?求出四邊形的最大面積及此時(shí)點(diǎn)的坐標(biāo).
【答案】點(diǎn),; ; ,,;
【解析】
(1)分別令解析式中x=0和y=0,求出點(diǎn)B、點(diǎn)C的坐標(biāo);
(2)設(shè)二次函數(shù)的解析式為,將點(diǎn)A、B、C的坐標(biāo)代入解析式,求出a、b、c的值,進(jìn)而求得解析式;
(3)由(2)的解析式求出頂點(diǎn)坐標(biāo),再由勾股定理求出CD的值,再以點(diǎn)C為圓心,CD為半徑作弧交對稱軸于P1,以點(diǎn)D為圓心CD為半徑作圓交對稱軸于點(diǎn)P2,P3,作CE垂直于對稱軸與點(diǎn)E,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;
(4)設(shè)出E點(diǎn)的坐標(biāo)為(a),就可以表示出F的坐標(biāo),由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.
令,可得,
令,可得,
即點(diǎn),;設(shè)二次函數(shù)的解析式為,
將點(diǎn)、、的坐標(biāo)代入解析式得,
,
解得:,
即該二次函數(shù)的關(guān)系式為;∵,
∴,
∴拋物線的對稱軸是.
∴.
∵,
∴.
在中,由勾股定理,得
.
∵是以為腰的等腰三角形,
∴.
如圖所示,作對稱軸于,
∴,
∴.
∴,,;當(dāng)時(shí),
∴,,
∴.
∵直線的解析式為:.
如圖,過點(diǎn)作于,設(shè),,
∴.
∵,
,
.
∴時(shí),,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若四邊形、四邊形都是正方形,顯然圖中有,;
當(dāng)正方形繞旋轉(zhuǎn)到如圖的位置時(shí),是否成立?若成立,請給出證明;若不成立,請說明理由;
當(dāng)正方形繞旋轉(zhuǎn)到如圖的位置時(shí),延長交于,交于.
①求證:;
②當(dāng),時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, BD 是△ABC 的角平分線, AE⊥ BD ,垂足為 F ,若∠ABC=35°,∠ C=50°,則∠CDE 的度數(shù)為( )
A.35°B.40°C.45°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線圖象的一部分,拋物線的頂點(diǎn)坐標(biāo),與軸的一個(gè)交點(diǎn),直線與拋物線交于,兩點(diǎn),下列結(jié)論:
①;②;③方程有兩個(gè)相等的實(shí)數(shù)根;④拋物線與軸的另一個(gè)交點(diǎn)是;⑤當(dāng)時(shí),有,
其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn).
填空:________;
點(diǎn)在拋物線上,且,求面積的最大值;
設(shè)為線段上一點(diǎn)(不含端點(diǎn)),連接,一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以每秒一個(gè)單位速度運(yùn)動(dòng)到點(diǎn),再沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到后停止,當(dāng)點(diǎn)的坐標(biāo)是多少時(shí),點(diǎn)在整個(gè)運(yùn)動(dòng)中用時(shí)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC和△DEF相似,則關(guān)于位似中心與相似比敘述正確的是( 。
A. 位似中心是點(diǎn)B,相似比是2:1 B. 位似中心是點(diǎn)D,相似比是2:1
C. 位似中心在點(diǎn)G,H之間,相似比為2:1 D. 位似中心在點(diǎn)G,H之間,相似比為1:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為10,點(diǎn)E、F分別在邊BC、CD上,且∠EAF=45°,AH⊥EF于點(diǎn)H,AH=10,連接BD,分別交AE、AH、AF于點(diǎn)P、G、Q.
(1)求△CEF的周長;
(2)若E是BC的中點(diǎn),求證:CF=2DF;
(3)連接QE,求證:AQ=EQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形A'B'C'D'在矩形ABCD的內(nèi)部,AB∥A'B',AD∥A'D',且AD=12,AB=6,設(shè)AB與A'B'、BC與B'C'、CD與C'D'、DA與D'A'之間的距離分別為a,b,c,d,
(1)a=b=c=d=2,矩形A'B'C'D'∽矩形ABCD嗎,為什么?
(2)若矩形A'B'C'D'∽矩形ABCD,a,b,c,d應(yīng)滿足什么等量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD為∠BAC的平分線,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延長線于F.
(1)求證:BE=CF;
(2)如果AB=7,AC=5,求AE,BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com