【題目】如圖,CA⊥BC,垂足為C,AC=2cm,BC=6cm,射線(xiàn)BM⊥BQ,垂足為B,動(dòng)點(diǎn)P從C點(diǎn)出發(fā)以1cm/s的速度沿射線(xiàn)CQ運(yùn)動(dòng),點(diǎn)N為射線(xiàn)BM上一動(dòng)點(diǎn),滿(mǎn)足PN=AB,隨著P點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)_____秒時(shí),△BCA與點(diǎn)P、N、B為頂點(diǎn)的三角形全等.
【答案】0或4或8或12.
【解析】
此題要分兩種情況:①當(dāng)P在線(xiàn)段BC上時(shí),②當(dāng)P在BQ上,再分別分兩種情況AC=BP或AC=BN進(jìn)行計(jì)算即可.
解:①當(dāng)P在線(xiàn)段BC上,AC=BP時(shí),△ACB≌△PBN,
∵AC=2,
∴BP=2,
∴CP=6﹣2=4,
∴點(diǎn)P的運(yùn)動(dòng)時(shí)間為4÷1=4(秒);
②當(dāng)P在線(xiàn)段BC上,AC=BN時(shí),△ACB≌△NBP,
這時(shí)BC=PN=6,CP=0,因此時(shí)間為0秒;
③當(dāng)P在BQ上,AC=BP時(shí),△ACB≌△PBN,
∵AC=2,
∴BP=2,
∴CP=2+6=8,
∴點(diǎn)P的運(yùn)動(dòng)時(shí)間為8÷1=8(秒);
④當(dāng)P在BQ上,AC=NB時(shí),△ACB≌△NBP,
∵BC=6,
∴BP=6,
∴CP=6+6=12,
點(diǎn)P的運(yùn)動(dòng)時(shí)間為12÷1=12(秒),
故答案為:0或4或8或12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有火車(chē)車(chē)皮和貨車(chē)可供租用,貨主準(zhǔn)備租用火車(chē)車(chē)皮和貨車(chē)運(yùn)輸一批物資,已知以往用這種火車(chē)車(chē)皮和貨車(chē)運(yùn)貨情況如下表:
第一次 | 第二次 | |
火車(chē)車(chē)皮(節(jié)) | 6 | 8 |
貨車(chē)(輛) | 15 | 10 |
累計(jì)運(yùn)貨(噸) | 360 | 440 |
(1)每節(jié)火車(chē)車(chē)皮和每輛貨車(chē)平均各裝物資多少?lài)崳?/span>
(2)若貨主需要租用該公司的火車(chē)車(chē)皮7節(jié),貨車(chē)10輛,剛好運(yùn)完這批貨物,如按每噸付運(yùn)費(fèi)60元,則貨主應(yīng)付運(yùn)費(fèi)總額為多少元?
(3)若貨主共有300噸貨,計(jì)劃租用該公司的火車(chē)車(chē)皮或貨車(chē)正好(每節(jié)車(chē)皮和每輛貨車(chē)都滿(mǎn)載)把這批貨運(yùn)完,該公司共有哪幾種運(yùn)貨方案?寫(xiě)出所有的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】早上,小明從家里步行去學(xué)校,出發(fā)一段時(shí)間后,小明媽媽發(fā)現(xiàn)小明的作業(yè)本落在家里,便帶上作業(yè)本騎車(chē)追趕,途中追上小明兩人稍作停留,媽媽騎車(chē)返回,小明繼續(xù)步行前往學(xué)校,兩人同時(shí)到達(dá).設(shè)小明在途的時(shí)間為x,兩人之間的距離為y,則下列選項(xiàng)中的圖象能大致反映y與x之間關(guān)系的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,AD=9,點(diǎn)P為AD邊上點(diǎn),沿BP折疊△ABP,點(diǎn)A的對(duì)應(yīng)點(diǎn)為E,若點(diǎn)E到矩形兩條較長(zhǎng)邊的距離之比為1:4,則AP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,F分別在邊AD,CD上,
(1)若AB=6,AE=CF,點(diǎn)E為AD的中點(diǎn),連接AE,BF.
①如圖1,求證:BE=BF=3;
②如圖2,連接AC,分別交AE,BF于M,M,連接DM,DN,求四邊形BMDN的面積.
(2)如圖3,過(guò)點(diǎn)D作DH⊥BE,垂足為H,連接CH,若∠DCH=22.5°,則的值為 (直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用工件槽(如圖1)可以檢測(cè)一種鐵球的大小是否符合要求,已知工件槽的兩個(gè)底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內(nèi)時(shí),若同時(shí)具有圖1所示的A、B、E三個(gè)接觸點(diǎn),該球的大小就符合要求.圖2是過(guò)球心O及A、B、E三點(diǎn)的截面示意圖,求這種鐵球的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線(xiàn)相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB于E,交AC于F,過(guò)點(diǎn)O作OD⊥AC于D,下列四個(gè)結(jié)論:
①EF=BE+CF;
②∠BOC=90°+∠A;
③點(diǎn)O到△ABC各邊的距離相等;
④設(shè)OD=m,AE+AF=n,則.
其中正確的結(jié)論是____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是BC邊上的高,E是AC的中點(diǎn),P是AD上的一個(gè)動(dòng)點(diǎn),當(dāng)PC與PE的和最小時(shí),∠CPE的度數(shù)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線(xiàn)DC,CB上移動(dòng).
(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動(dòng),同時(shí)點(diǎn)F在邊CB上自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫(xiě)出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理;
(2)如圖2,當(dāng)E,F分別在邊CD,BC的延長(zhǎng)線(xiàn)上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時(shí)CE:CD的值;
(3)如圖3,當(dāng)E,F分別在直線(xiàn)DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫(huà)出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線(xiàn)段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com