【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E為BC邊的中點,連接DE.
(1)求證:DE與⊙O相切.
(2)若tanC= ,DE=2,求AD的長.
【答案】
(1)證明:連接DO,DB,
∴OD=OB,
∴∠ODB=∠OBD.
∵AB是直徑,
∴∠ADB=90°,
∴∠CDB=90°.
∵E為BC的中點,
∴DE=BE,
∴∠EDB=∠EBD,
∴∠ODB+∠EDB=∠OBD+∠EBD,
即∠EDO=∠EBO.
∵∠ABC=90°,
∴∠EDO=90°.
∴OD⊥ED于點D.
又∵OD是半徑,
∴DE為⊙O的切線
(2)解:∵∠BDC=90°,點E為BC的中點,
∴DE= BC.
∵DE=2,
∴BC=4.
在直角△ABC中,tanC= ,
∴AB=BC× =2 .
在直角△ABC中,由勾股定理得到AC=6.
又∵△ABD∽△ACB,
∴ = ,即 = ,
∴AD= .
【解析】(1)如圖,連接DO、DB.欲證明DE與⊙O相切,只需證得OD⊥DE即可;(2)由“直角三角形斜邊上的中線等于斜邊的一半”易求DE= BC=2,則BC=4;然后通過解直角△ABC求得AB=2 、由勾股定理求得AC=6;最后通過△ABD∽△ACB的對應邊成比例求得AD= .
【考點精析】關于本題考查的切線的判定定理和相似三角形的判定與性質,需要了解切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列條件中,不能證明△ABC≌△DCB是 ( 。
A. AB=DC,AC=DB B. AB=DC,∠ABC=∠DCB
C. DB=AC,∠DBC=∠ACB D. DC=AB,∠DBC=∠ACB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AB=AC.
(1)如圖1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求證:CD=BE;
(2)如圖2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的長;
(3)如圖3,在△ADE中,當BD垂直平分AE于H,且∠BAC=2∠ADB時,試探究CD2,BD2,AH2之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知長方形ABCD中,AD=6cm,AB=4cm,點E為AD的中點.若點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BC上由點B向點C運動.
(1)若點Q的運動速度與點P的運動速度相等,經過1秒后,△AEP與△BPQ是否全等,請說明理由,并直接寫出此時線段PE和線段PQ的位置關系;
(2)若點Q的運動速度與點P的運動速度相等,運動時間為t秒,設△PEQ的面積為Scm2,請用t的代數(shù)式表示S;
(3)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△AEP與△BPQ全等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校學生的身高情況,隨機抽取該校若干男生、女生進行抽樣調查.已知抽取的樣本中,男生、女生人數(shù)相同,利用所得數(shù)據繪制如下統(tǒng)計表和統(tǒng)計圖(如圖20-3-2所示):
身高情況分組表(單位:cm)
組別 | 身高 |
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據圖表提供的信息,回答下列問題:
(1)樣本中,男生身高的眾數(shù)在___________組,中位數(shù)在___________組;
(2)樣本中,女生身高在E組的有___________人;
(3)已知該校共有男生400人、女生380人,請估計身高在160≤x<170范圍內的學生約有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】威麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進多少件A種商品?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com