【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=112°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請說明理由;
(2)將圖1中的三角板繞點O按每秒4°的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為多少?
(3)將圖1中的三角板繞點O順時針旋轉至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄浚骸螦OM與∠NOC之間的數(shù)量關系,并說明理由.
【答案】
(1)解:解:平分
理由:延長NO到D
∵∠MON=90° ∴∠MOD=90°
∴∠MOB+∠NOB=90° ∠MOC+∠COD=90°
∵∠MOB=∠MOC ∴∠NOB=∠COD
∵∠NOB=∠AOD
∴ ∠COD=∠AOD
∴直線NO平分∠AOC
(2)解:t=59或14
(3)解:∠AOM-∠NOC=220
理由:∵∠AOM=90°-∠AON ∠NOC=68°-∠AON
∴∠AOM-∠NOC
=(90°-∠AON)-(68°-∠AON)
=22°
【解析】(1)利用平分線定義和等角的余角相等可證出結論;(2)須分類討論,ON在∠AOC的內(nèi)部或外部;(3)∠AOM、∠NOC都用∠AON的式子表示,二者再相減,可得出結果.
【考點精析】關于本題考查的角的平分線和余角和補角的特征,需要了解從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;互余、互補是指兩個角的數(shù)量關系,與兩個角的位置無關才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A,B兩種型號的電風扇的銷售單價;
(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為培養(yǎng)學生養(yǎng)成良好的“愛讀書,讀好書,好讀書”的習慣,我市某中學舉辦了“漢字聽寫大賽”,準備為獲獎同學頒獎.在購買獎品時發(fā)現(xiàn),一個書包和一本詞典會花去48元,用124元恰好可以購買3個書包和2本詞典.
(1)每個書包和每本詞典的價格各是多少元?
(2)學校計劃用總費用不超過900元的錢數(shù),為獲勝的40名同學頒發(fā)獎品(每人一個書包或一本詞典),求最多可以購買多少個書包?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了綠化環(huán)境,育英中學八年級三班同學都積極參加植樹活動,今年植樹節(jié)時,該班同學植樹情況的部分數(shù)據(jù)如圖所示,請根據(jù)統(tǒng)計圖信息,回答下列問題:(第(1),(3)小題需列式解答)
(1)八牛級三班共有多少名同學?
(2)條形統(tǒng)計圖中,m= , n=。
(3)扇形統(tǒng)計圖中,算出植樹2棵的人數(shù)所對應的扇形圓心角的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑作半圓O,點C為半圓上與A,B不重合的一動點,過點C作CD⊥AB于點D,點E與點D關于BC對稱,BE與半圓交于點F,連CE.
(1)判斷CE與半圓O的位置關系,并給予證明.
(2)點C在運動時,四邊形OCFB的形狀可變?yōu)榱庑螁?若可以,猜想此時∠AOC的大小,并證明你的結論;若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在開展“學雷鋒社會實踐”活動中,某校為了解全校1200名學生參加活動的情況,隨機調(diào)查了50名學生每人參加活動的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計圖如圖.
(Ⅰ)求這50個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅱ)根據(jù)樣本數(shù)據(jù),估算該校1200名學生共參加了多少次活動?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:三角形ABC中,∠A=90°,AB=AC,D為BC的中點,
(1)如圖,E,F(xiàn)分別是AB,AC上的點,且BE=AF,求證:△DEF為等腰直角三角形;
(2)若E,F(xiàn)分別為AB,CA延長線上的點,仍有BE=AF,其他條件不變,那么,△DEF是否仍為等腰直角三角形?證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校需購買一批課桌椅供學生使用,已知A型課桌椅230元/套,B型課桌椅200元/套.
(1)該校購買了A,B型課桌椅共250套,付款53000元,求A,B型課桌椅各買了多少套?
(2)因學生人數(shù)增加,該校需再購買100套A,B型課桌椅,現(xiàn)只有資金22000元,最多能購買A型課桌椅多少套?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com