已知:y=求代數(shù)式的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2+x+2.

1.當(dāng)a=-1時(shí),求此拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸

2.若代數(shù)式-x2+x+2的值為正整數(shù),求x的值;

3.若a是負(fù)數(shù)時(shí),當(dāng)a=a1時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)M(m,0);當(dāng)a=a2時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)N(n,0). 若點(diǎn)M在點(diǎn)N的左邊,試比較a1與a2的大小.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(浙江臺(tái)州卷)數(shù)學(xué) 題型:解答題

(11·臺(tái)州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點(diǎn)A,它的頂點(diǎn)為
點(diǎn)B,點(diǎn)A、B關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)分別為C、D.若A、B、C、D中任何三點(diǎn)都不在一直
線上,則稱(chēng)四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.
(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使得△PBD是一個(gè)等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆北京門(mén)頭溝中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

已知拋物線y=ax2+x+2.
【小題1】當(dāng)a=-1時(shí),求此拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸
【小題2】若代數(shù)式-x2+x+2的值為正整數(shù),求x的值;
【小題3】若a是負(fù)數(shù)時(shí),當(dāng)a=a1時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)M(m,0);當(dāng)a=a2時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)N(n,0). 若點(diǎn)M在點(diǎn)N的左邊,試比較a1與a2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué) 題型:解答題

(11·臺(tái)州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點(diǎn)A,它的頂點(diǎn)為

點(diǎn)B,點(diǎn)A、B關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)分別為C、D.若A、B、C、D中任何三點(diǎn)都不在一直

線上,則稱(chēng)四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.

(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.

(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.

①用含b的代數(shù)式表示m、n的值;

②在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使得△PBD是一個(gè)等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案