【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克元,經(jīng)試銷發(fā)現(xiàn),銷售量(千克)與銷售單價(元)符合一次函數(shù)關(guān)系,如圖是與的函數(shù)關(guān)系圖象.
求與的函數(shù)解析式(也稱關(guān)系式);
設該水果銷售店試銷草莓獲得的利潤為元,求的最大值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知與,平分.
(1)如圖1,與的兩邊分別相交于點、,,試判斷線段與的數(shù)量關(guān)系,并說明理由.
以下是小宇同學給出如下正確的解法:
解:.
理由如下:如圖1,過點作,交于點,則,
…
請根據(jù)小宇同學的證明思路,寫出該證明的剩余部分.
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
(3)若,.
①如圖3,與的兩邊分別相交于點、時,(1)中的結(jié)論成立嗎?為什么?線段、、有什么數(shù)量關(guān)系?說明理由.
②如圖4,的一邊與的延長線相交時,請回答(1)中的結(jié)論是否成立,并請直接寫出線段、、有什么數(shù)量關(guān)系;如圖5,的一邊與的延長線相交時,請回答(1)中的結(jié)論是否成立,并請直接寫出線段、、有什么數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王教授和他的孫子小強星期天一起去爬山,來到山腳下,小強讓爺爺先上山,然后追趕爺爺,如圖所示,兩條線段分別表示小強和爺爺離開山腳的距離(米)與爬山所用時間(分)的關(guān)系(小強開始爬山時開始計時),請看圖回答下列問題:
(1)爺爺比小強先上了多少米?山頂離山腳多少米?
(2)誰先爬上山頂?小強爬上山頂用了多少分鐘?
(3)圖中兩條線段的交點表示什么意思?這時小強爬山用時多少?離山腳多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD的邊BC的延長線上取一點E,在直線BC的同側(cè)作一個以CE為底的等腰△CEF,且滿足∠B+∠F=180°,則稱三角形CEF為四邊形ABCD的“伴隨三角形”.
(1)如圖1,若△CEF是正方形ABCD的“伴隨三角形”:
①連接AC,則∠ACF= ;
②若CE=2BC,連接AE交CF于H,求證:H是CF的中點;
(2)如圖2,若△CEF是菱形ABCD的“伴隨三角形”,∠B=60°,M是線段AE的中點,連接DM、FM,猜想并證明DM與FM的位置與數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+4交x軸于點A、B,交y軸于點C,連結(jié)AC,BC,D是線段OB上一動點,以CD為一邊向右側(cè)作正方形CDEF,連結(jié)BF,交DE于點P.
(1)試判斷△ABC的形狀,并說明理由;
(2)求證:BF⊥AB.
(3)當點D從點O沿x軸正方向移動到點B時,點E所走過的路線長為______;
(4)探究當點D在何處時,△FBC是等腰三角形,并求出相應的BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.
(1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上.
(1)求證:△AEF∽△ABC;
(2)求這個正方形零件的邊長;
(3)如果把它加工成矩形零件如圖2,問這個矩形的最大面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com