【題目】某公司用100萬元研發(fā)一種市場急需電子產(chǎn)品,已于當(dāng)年投入生產(chǎn)并銷售,已知生產(chǎn)這種電子產(chǎn)品的成本為4/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量y(萬件)與銷售價(jià)格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,設(shè)公司銷售這種電子產(chǎn)品的年利潤為s(萬元).

1)請求出y(萬件)與x(元/件)的函數(shù)表達(dá)式;

2)求出第一年這種電子產(chǎn)品的年利潤s(萬元)與x(元/件)的函數(shù)表達(dá)式,并求出第一年年利潤的最大值.

【答案】1y;(2)當(dāng)每件的銷售價(jià)格定為16元時,第一年年利潤的最大值為44萬元.

【解析】

1)依據(jù)待定系數(shù)法,即可求出y(萬件)與x(元/件)之間的函數(shù)關(guān)系式;

2)分兩種情況進(jìn)行討論,當(dāng)x8時,smax=﹣20;當(dāng)x16時,smax44;根據(jù)44>﹣20,可得當(dāng)每件的銷售價(jià)格定為16元時,第一年年利潤的最大值為44萬元.

解:(1)當(dāng)4≤x≤8時,設(shè)y,將A4,40)代入得k4×40160,

yx之間的函數(shù)關(guān)系式為y;

當(dāng)8x≤28時,設(shè)yk'x+b,將B8,20),C28,0)代入得,

,

解得

yx之間的函數(shù)關(guān)系式為y=﹣x+28,

綜上所述,y;

2)當(dāng)4≤x≤8時,s=(x4y160=(x4100+60,

∵當(dāng)4≤x≤8時,s隨著x的增大而增大,

∴當(dāng)x8時,smax+60=﹣20;

當(dāng)8x≤28時,s=(x4y80=(x4)(﹣x+28)﹣80=﹣(x1002+44,

∴當(dāng)x16時,smax44;

44>﹣20,

∴當(dāng)每件的銷售價(jià)格定為16元時,第一年年利潤的最大值為44萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)“垃圾分類”,環(huán)保部門要求垃圾要按A,B,C,D四類分別裝袋、投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料、廢紙等可回收物,D類指出其他垃圾,小明、小亮各投放了一袋垃圾.

(1)直接寫出小明投放的垃圾恰好是A類的概率;

(2)求小亮投放的垃圾與小明投放的垃圾是同一類的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑的于點(diǎn),交于點(diǎn),點(diǎn)的延長線上一點(diǎn),且∠PDB=∠A,連接,

(1)求證:的切線.

(2)填空:

①當(dāng)的度數(shù)為______時,四邊形是菱形;

②當(dāng)時,的面積為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小王在校園上的A處正面觀測一座教學(xué)樓墻上的大型標(biāo)牌,測得標(biāo)牌下端D處的仰角為30°,然后他正對大樓方向前進(jìn)5m到達(dá)B處,又測得該標(biāo)牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標(biāo)牌的上端與樓房的頂端平齊.求此標(biāo)牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九(18)班開展數(shù)學(xué)活動,毓齊和博文兩位同學(xué)合作用測角儀測量學(xué)校的旗桿,毓齊站在B點(diǎn)測得旗桿頂端E點(diǎn)的仰角為45°,博文站在D(D點(diǎn)在直線FB上)測得旗桿頂端E點(diǎn)仰角為15°,已知毓齊和博文相距(BD)30米,毓齊的身高(AB)1.6米,博文的身高(CD)1.75米,求旗桿的高EF的長.(結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請直接寫出“落點(diǎn)”的個數(shù)和旋轉(zhuǎn)180°時點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,面積為1的等腰直角△OA1A2,∠OA2A190°,以OA2為斜邊在△OA1A2外部作等腰直角△OA2A3,以OA3為斜邊在△OA2A3外部作等腰直角△OA3A4,以OA4為斜邊在△OA3A4外部作等腰直角△OA4A5,,連接A1A3,A2A4,A3A5,分別與OA2,OA3,OA4,交于點(diǎn)C1,C2,C3,按此規(guī)律繼續(xù)下去,則△OAnCn的面積等于_____(用含正整數(shù)n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋中有紅、白、黃三種顏色的乒乓球(除顏色外其余都相同),其中有白球2個,黃球1個,小明將球攪勻后從中摸出一個球是紅球的概率是0.25

1)求口袋中紅球的個數(shù);

2)若小明第一次從中摸出一個球,放回?cái)噭蚝笤倜鲆粋球,請通過樹狀圖或者列表的方法求出小明兩次均摸出紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,等邊△ABC中,線段AD為其內(nèi)角角平分線,過D點(diǎn)的直線B1C1AC于點(diǎn)C1AB的延長線于點(diǎn)B1

(1)請你探究:,是否都成立?

(2)請你繼續(xù)探究:若ABC為任意三角形,線段AD為其內(nèi)角角平分線,請問一定成立嗎?并證明你的判斷.

(3)如圖(2)所示RtABC中,ACB90°AC8,ABEAB上一點(diǎn)且AE5,CE交其內(nèi)角角平分線ADF.試求的值.

查看答案和解析>>

同步練習(xí)冊答案