【題目】將一矩形紙片OABC 放在平面直角坐標系中, O(0,0) , A(6,0) , C(0,3) .動點Q 從點O 出發(fā)以每秒 1 個單位長的速度沿OC 向終點C 運動,運動秒時,動點 P 從點A 出發(fā)以相等的速度沿 AO 向終點O 運動。當其中一點到達終點時,另一點也停止運動。設點 P 的運動時間為t (秒).
(1)用含t 的代數(shù)式表示OP,OQ ;
(2)當t 1時,如圖 1,將△OPQ 沿 PQ 翻折,點O 恰好落在CB 邊上的點 D 處,求點 D 的坐標;
(3)連結(jié) AC ,將△OPQ 沿 PQ 翻折,得到△EPQ ,如圖 2.問: PQ 與 AC 能否平行? PE 與 AC 能否垂直?若能,求出相應的t 值;若不能,說明理由.
【答案】(1) OP 6 t , OQ t (2)D(1,3);(3)① PQ 能與 AC 平行,t ,② PE 不能與 AC 垂直,理由見解析.
【解析】
(1)由O(0,0),A(6,0),C(0,3),可得:OA=6,OC=3,根據(jù)矩形的對邊平行且相等,可得:AB=OC=3,BC=OA=6,進而可得點B的坐標為:(6,3),然后根據(jù)P點與Q點的運動速度與運動時間即可用含t的代數(shù)式表示OP,OQ;
(2)由翻折的性質(zhì)可知:△OPQ≌△DPQ,進而可得:DQ=OQ,然后由t=1時,DQ=OQ=,CQ=OCOQ=,然后利用勾股定理可求CD的值,進而可求點D的坐標;
(3)① PQ 能與 AC 平行。若 PQ ∥ AC ,得到,t ;② PE 不能與 AC 垂直。若 PE AC ,延長QE 交OA 于 F,得到,t 3.45 ,即可解答
(1)∵O(0,0),A(6,0),C(0,3),
∴OA=6,OC=3,
∵四邊形OABC是矩形,
∴AB=OC=3,BC=OA=6,
∴B(6,3),
∵動點Q從O點以每秒1個單位長的速度沿OC向終點C運動,運動23秒時,動點P從點A出發(fā)以相等的速度沿AO向終點O運動.
∴當點P的運動時間為t(秒)時,
AP=t,OQ t ,
則OP=OAAP=6t;
(2)當t 1時,過 D 點作 DD1 OA ,交OA 于 D1 ,如圖 1,
則 DQ QO=, QC ,
CD 1 , D(1,3)
(3)① PQ 能與 AC 平行.若 PQ ∥ AC ,如圖 2,
則,
即,
t ,而0 ≤ t ≤ ,
t ,
② PE 不能與 AC 垂直。
若 PE AC ,延長QE 交OA 于 F ,如圖 3,
QF ,
EF QF QE QF OQ (t - (t =(
又Rt△EPF ∽ Rt△OCA ,
,
t 3.45 .
而0 ≤ t ≤.
∴ t 不存在.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出下列說法:①ac>0;②當x>1時,函數(shù)y隨x的增大而增大;③a+b+c=0;④2a+b=0;⑤當y>0時,﹣1<x<3.其中,正確的說法有( 。﹤
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=2.
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 ,在平面直角坐標系中,邊長為 1 的正方形OA1B1C 的對角線 A1C 和OB1 交于點 M1,以 M1A1為對角線作第二個正方形 A2A1B2M1對角線 A1M1和 A2 B2 交于點 M 2 ;以 M 2 A1 為對角線作第三個正方形 A3 A1B3M 2,對角線 A1M 2 和 A3 B3 交于點 M 3 ;…,依此類推,那么 M 1 的坐標為_____;這樣作的第 n 個正方形的對角線交點 Mn 的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】典典同學學完統(tǒng)計知識后,隨機調(diào)查了她家所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計圖:
請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)扇形統(tǒng)計圖中a= ,b= ;并補全條形統(tǒng)計圖;
(2)若該轄區(qū)共有居民3500人,請估計年齡在0~14歲的居民的人數(shù).
(3)一天,典典知道了轄區(qū)內(nèi)60歲以上的部分老人參加了市級門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結(jié)果,王大爺告訴說,甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知菱形ABCD的邊長為5,∠DAB=60°.將菱形ABCD繞著A逆時針旋轉(zhuǎn)得到菱形AEFG,設∠EAB=α,且0°<α<90°,連接DG、BE、CE、CF.
(1)如圖(1),求證:△AGD≌△AEB;
(2)當α=60°時,在圖(2)中畫出圖形并求出線段CF的長;
(3)若∠CEF=90°,在圖(3)中畫出圖形并求出△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】沾益區(qū)興隆水果店計劃用1000元購進甲、乙兩種新出產(chǎn)的水果140千克,這兩種水果的進價、售價如下表所示:
進價(元/千克) | 售價(元/千克) | |
甲 | 5 | 8 |
乙 | 9 | 13 |
(1)這兩種水果各購進多少千克?
(2)該水果店全部銷售完這批水果時獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點,拋物線過A、B兩點.
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于點M,交這個拋物線于點N.求當t 取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與y軸正半軸相交,其頂點坐標為(,1),下列結(jié)論:①abc>0;②a=b;③a=4c﹣4;④方程有兩個相等的實數(shù)根,其中正確的結(jié)論是______.(只填序號即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com