【題目】如圖,△ABC為⊙O的內(nèi)接三角形,BC=24 , ,點(diǎn)D為弧BC上一動(dòng)點(diǎn),CE垂直直線OD于點(diǎn)E, 當(dāng)點(diǎn)D由B點(diǎn)沿弧BC運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)E經(jīng)過的路徑長為( )
A. B. C. D.
【答案】C
【解析】解:當(dāng)點(diǎn)D由B點(diǎn)沿弧BC運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)E經(jīng)過的路徑是以OC的中點(diǎn)K為圓心,以OC為半徑的一段圓弧,圓心角為240°,如圖1.當(dāng)D與B重合時(shí),如圖2,E和L重合.∵∠A=60°,∴∠BOC=120°,∴∠COE=60°.∵OK=KL,∴△OKL是等邊三角形,∴∠OKL=60°.當(dāng)D運(yùn)動(dòng)到C時(shí),如圖3,D、E、C三點(diǎn)重合,此時(shí)∠OKC=180°,∴∠LKC=60°+180°=240°.過O作OM⊥BC于M,如圖3,則BM=BC=12.∵∠BOC=120°,OB=OC,∴∠MBO=(180°-120°)÷2=30°,∴OM=,OB=2OM=,∴OK=OB=,∴點(diǎn)E經(jīng)過的路徑長為=.故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判斷這個(gè)四邊形是平行四邊形的條件共有
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,點(diǎn)E是邊AD的中點(diǎn),連接BE并延長交CD的延長線于點(diǎn)F,交AC于點(diǎn)G.
(1)若FD=2, ,求線段DC的長;
(2)求證:EF·GB=BF·GE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在一條可以折疊的數(shù)軸上,點(diǎn)A,B分別表示數(shù)-9和4.
(1)A,B兩點(diǎn)之間的距離為________.
(2)如圖2,如果以點(diǎn)C為折點(diǎn),將這條數(shù)軸向右對折,此時(shí)點(diǎn)A落在點(diǎn)B的右邊1個(gè)單位長度處,則點(diǎn)C表示的數(shù)是________.
(3)如圖1,若點(diǎn)A以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),點(diǎn)B以每秒2個(gè)單位長度的速度也沿?cái)?shù)軸向右運(yùn)動(dòng),那么經(jīng)過多少時(shí)間,A、B兩點(diǎn)相距4個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O在線段AB上,(不與端點(diǎn)A、B重合),以點(diǎn)O為圓心,OA的長為半徑畫弧,線段BP與這條弧相切與點(diǎn)P,直線CD垂直平分PB,交PB于點(diǎn)C,交AB于點(diǎn)D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r。
(1)求證:OP∥ED;
(2)當(dāng)∠ABP=30°時(shí),求扇形AOP的面積,并證明四邊形PDBE是菱形;
(3)過點(diǎn)O作OF⊥DE于點(diǎn)F,如圖所示,線段EF的長度是否隨r的變化而變化?若不變,直接寫出EF的值;若變化,直接寫出EF與r的關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后的圖形是△A′B′C,點(diǎn)A的對應(yīng)點(diǎn)A′落在中線AD上,且點(diǎn)A′是△ABC的重心,A′B′與BC相交于點(diǎn)E,那么BE:CE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:一輛汽車在一個(gè)十字路口遇到紅燈剎車停下,汽車?yán)锏鸟{駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時(shí)汽車車頭與斑馬線的距離x是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b,填空:當(dāng)點(diǎn)A位于 時(shí),線段AC的長取得最大值,且最大值為 (用含a,b的式子表示).
問題探究
(2)點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=6,AB=3,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE,找出圖中與BE相等的線段,請說明理由,并直接寫出線段BE長的最大值.
問題解決:
(3)①如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,求線段AM長的最大值及此時(shí)點(diǎn)P的坐標(biāo).
②如圖4,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若對角線BD⊥CD于點(diǎn)D,請直接寫出對角線AC的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校廣播站要招聘一名播音員,需考查應(yīng)聘學(xué)生的應(yīng)變能力、知識面、朗讀水平三個(gè)項(xiàng)目,決賽中,小文和小明兩位同學(xué)的各項(xiàng)成績?nèi)缦卤恚u委計(jì)算三項(xiàng)測試的平均成績,發(fā)現(xiàn)小明與小文的相同.
(1)評委按應(yīng)變能力占10%,知識面占40%,朗誦水平占50%計(jì)算加權(quán)平均數(shù),作為最后評定的總成績,成績高者將被錄用,小文和小明誰將被錄用?
(2)若(1)中應(yīng)變能力占x%,知識面占(50﹣x)%,其中0<x<50,其它條件都不改變,使另一位選手被錄用,請直接寫出一個(gè)你認(rèn)為合適的x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com