【題目】如圖,已知二次函數(shù)y1=ax2+bx過(﹣2,4),(﹣4,4)兩點.
(1)求二次函數(shù)y1的解析式;
(2)將y1沿x軸翻折,再向右平移2個單位,得到拋物線y2 , 直線y=m(m>0)交y2于M、N兩點,求線段MN的長度(用含m的代數(shù)式表示);
(3)在(2)的條件下,y1、y2交于A、B兩點,如果直線y=m與y1、y2的圖象形成的封閉曲線交于C、D兩點(C在左側),直線y=﹣m與y1、y2的圖象形成的封閉曲線交于E、F兩點(E在左側),求證:四邊形CEFD是平行四邊形.
【答案】
(1)
解:∵二次函數(shù)y1=ax2+bx過(﹣2,4),(﹣4,4)兩點,
∴ 解得 ,
∴二次函數(shù)y1的解析式y(tǒng)1=﹣ x2﹣3x
(2)
解:∵y1=﹣ (x+3)2+ ,
∴頂點坐標(﹣3, ),
∵將y1沿x軸翻折,再向右平移2個單位,得到拋物線y2,
∴拋物線y2的頂點坐標(﹣1,﹣ ),
∴拋物線y2為y= (x+1)2﹣ ,
由 消去y整理得到x2+2x﹣8﹣2m=0,設x1,x2是它的兩個根,
則MN=|x1﹣x2|= =
(3)
解:由 消去y整理得到x2+6x+2m=0,設兩個根為x1,x2,
則CD=|x1﹣x2|= = ,
由 消去y得到x2+2x﹣8+2m=0,設兩個根為x1,x2,
則EF=|x1﹣x2|= = ,
∴EF=CD,EF∥CD,
∴四邊形CEFD是平行四邊形.
【解析】(1)根據(jù)待定系數(shù)法即可解決問題;
(2)先求出拋物線y2的頂點坐標,再求出其解析式,利用方程組以及根與系數(shù)關系即可求出MN;
(3)用類似(2)的方法,分別求出CD、EF即可解決問題.本題考查二次函數(shù)綜合題、根與系數(shù)關系、平行四邊形的判定等知識,解題的關鍵是靈活應用這些知識解決問題,記住公式|x1﹣x2|= ,屬于中考壓軸題.
【考點精析】掌握平行四邊形的判定是解答本題的根本,需要知道兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,則B、D兩點間的距離為( 。
A.
B.2
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】∠α和∠β互補,且∠α>∠β,則下列表示∠β的余角的式子有:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β),其中錯誤的有( 。﹤
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角三角形中,兩條直角邊的長度分別為a和b,斜邊長度為c,則a2+b2=c2,即兩條直角邊的平方和等于斜邊的平方,此結論稱為勾股定理.在一張紙上畫兩個同樣大小的直角三角形ABC和A′B′C′,并把它們拼成如圖所示的形狀 (點C和A′重合,且兩直角三角形的斜邊互相垂直).請利用拼得的圖形證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中秋佳節(jié)我國有賞月和吃月餅的傳統(tǒng),某校數(shù)學興趣小組為了了解本校學生喜愛月餅的情況,隨機抽取了60名同學進行問卷調查,經過
統(tǒng)計后繪制了兩幅尚不完整的統(tǒng)計圖.
(注:參與問卷調查的每一位同學在任何一種分類統(tǒng)計中只有一種選擇)
請根據(jù)統(tǒng)計圖完成下列問題:
(1)扇形統(tǒng)計圖中,“很喜歡”的部分所對應的圓心角為度;條形統(tǒng)計圖中,喜歡“豆沙”月餅的學生有人;
(2)若該校共有學生900人,請根據(jù)上述調查結果,估計該校學生中“很喜歡”和“比較喜歡”月餅的共有人.
(3)甲同學最愛吃云腿月餅,乙同學最愛吃豆沙月餅,現(xiàn)有重量、包裝完全一樣的云腿、豆沙、蓮蓉、蛋黃四種月餅各一個,讓甲、乙每人各選一個,請用畫樹狀圖法或列表法,求出甲、乙兩人中有且只有一人選中自己最愛吃的月餅的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在平面直角坐標系中第二象限內,頂點A的坐標是(﹣2,3),先把△ABC向右平移4個單位得到△A1B1C1 , 再作△A1B1C1關于x軸對稱圖形△A2B2C2 , 則頂點A2的坐標是________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是一種利用圖形計算正整數(shù)乘法的方法,請根據(jù)圖1~圖4四個算圖所示的規(guī)律,可知圖5所表示的算式為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com