(2007•茂名)如圖是一個圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個小圓孔,則一條到達(dá)底部的直吸管在罐內(nèi)部分a的長度(罐壁的厚度和小圓孔的大小忽略不計)范圍是( )

A.12≤a≤13
B.12≤a≤15
C.5≤a≤12
D.5≤a≤13
【答案】分析:最短距離就是飲料罐的高度,最大距離可根據(jù)勾股定理解答.
解答:解:a的最小長度顯然是圓柱的高12,最大長度根據(jù)勾股定理,得:=13.
即a的取值范圍是12≤a≤13.
故選A.
點(diǎn)評:主要是運(yùn)用勾股定理求得a的最大值,此題比較常見,有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2007•茂名)如圖,點(diǎn)A,B,C,D是直徑為AB的⊙O上四個點(diǎn),C是劣弧的中點(diǎn),AC交BD于點(diǎn)E,AE=2,EC=1.
(1)求證:△DEC∽△ADC;
(2)試探究四邊形ABCD是否是梯形?若是,請你給予證明并求出它的面積;若不是,請說明理由.
(3)延長AB到H,使BH=OB.求證:CH是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(03)(解析版) 題型:解答題

(2007•茂名)如圖,已知正方形ABCD的邊長是2,E是AB的中點(diǎn),延長BC到點(diǎn)F使CF=AE.
(1)若把△ADE繞點(diǎn)D旋轉(zhuǎn)一定的角度時,能否與△CDF重合?請說明理由.
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點(diǎn)G.求證:AH⊥ED,并求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2007•茂名)如圖,已知正方形ABCD的邊長是2,E是AB的中點(diǎn),延長BC到點(diǎn)F使CF=AE.
(1)若把△ADE繞點(diǎn)D旋轉(zhuǎn)一定的角度時,能否與△CDF重合?請說明理由.
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點(diǎn)G.求證:AH⊥ED,并求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(10)(解析版) 題型:解答題

(2007•茂名)如圖,點(diǎn)A,B,C,D是直徑為AB的⊙O上四個點(diǎn),C是劣弧的中點(diǎn),AC交BD于點(diǎn)E,AE=2,EC=1.
(1)求證:△DEC∽△ADC;
(2)試探究四邊形ABCD是否是梯形?若是,請你給予證明并求出它的面積;若不是,請說明理由.
(3)延長AB到H,使BH=OB.求證:CH是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊答案