如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點F是AB中點,兩邊FD,F(xiàn)E分別交AC,BC于點D,E兩點,當∠DFE在△ABC內(nèi)繞頂點F旋轉(zhuǎn)時(點D不與A,C重合),給出以下個結(jié)論:①CD=BE   ②四邊形CDFE不可能是正方形  ③△DFE是等腰直角三角形 ④S四邊形CDFE=
1
2
S△ABC,上述結(jié)論中始終正確的有(  )
分析:首先連接CF,由等腰直角三角形的性質(zhì)可得:∴∠A=∠B=45°,CF⊥AB,∠ACF=
1
2
∠ACB=45°,CF=AF=BF=
1
2
AB,則證得∠DCF=∠B,∠DFC=∠EFB,然后可證得:△DCF≌△EBF,由全等三角形的性質(zhì)可得CD=BE,DF=EF,也可證得S四邊形CDFE=
1
2
S△ABC,問題得解.
解答:解:連接CF,
∵AC=BC,∠ACB=90°,點F是AB中點,
∴∠A=∠B=45°,CF⊥AB,∠ACF=
1
2
∠ACB=45°,CF=AF=BF=
1
2
AB,
∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正確;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正確;
∴S△DCF=S△BEF
∴S四邊形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=
1
2
S△ABC,故④正確.
若EF⊥BC時,則可得:四邊形CDFE是矩形,
∵DF=EF,
∴四邊形CDFE是正方形,故②錯誤.
∴結(jié)論中始終正確的有①③④.
故選C.
點評:此題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),正方形的判定等知識.題目綜合性很強,但難度不大,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結(jié)論不正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案