【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過A、B、D三點,過點B作BE∥AD,交⊙O于點E,連接ED.
(1)求證:ED∥AC;
(2)連接AE,試證明:ABCD=AEAC.
【答案】(1)證明詳見解析;(2)證明詳見解析.
【解析】
試題分析:(1)由圓周角定理,可得∠BAD=∠E,又由BE∥AD,易證得∠BAD=∠ADE,然后由AD是△ABC的角平分線,證得∠CAD=∠ADE,繼而證得結(jié)論;
(2)首先連接AE,易得∠CAD=∠ABE,∠ADC=∠AEB,則可證得△ADC∽△BEA,然后由相似三角形的對應(yīng)邊成比例,證得結(jié)論.
試題解析:(1)∵BE∥AD,
∴∠E=∠ADE,
∵∠BAD=∠E,
∴∠BAD=∠ADE,
∵AD是△ABC的角平分線,
∴∠BAD=∠CAD,
∴∠CAD=∠ADE,
∴ED∥AC;
(2)連接AE,
∵∠CAD=∠ADE,∠ADE=∠ABE,
∴∠CAD=∠ABE,
∵∠ADC+∠ADB=180°,∠ADB+∠AEB=180°,
∴∠ADC=∠AEB,
∴△ADC∽△BEA,
∴AC:AB=CD:AE,
∴ABCD=AEAC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個邊長為4的等邊三角形ABC的高與⊙O的直徑相等,如圖放置,⊙O與BC相切于點C,⊙O與AC相交于點E,則CE的長是:
A. B. C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批乒乓球的質(zhì)量檢驗結(jié)果如下:
抽取的乒乓球數(shù)n | 200 | 500 | 1000 | 1500 | 2000 |
優(yōu)等品頻數(shù)m | 188 | 471 | 946 | 1426 | 1898 |
優(yōu)等品頻率 | 0.940 | 0.942 | 0.946 | 0.951 | 0.949 |
(1)畫出這批乒乓球“優(yōu)等品”頻率的折線統(tǒng)計圖;
(2)這批乒乓球“優(yōu)等品”的概率的估計值是多少?
(3)從這批乒乓球中選擇5個黃球、13個黑球、22個紅球,它們除顏色外都相同,將它們放入一個不透明的袋中.
①求從袋中摸出一個球是黃球的概率;
②現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個是黃球的概率不小于, 問至少取出了多少個黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,BD⊥DC,BD=DC,CE平分∠BCD,交AB于點E,交BD于點H,EN∥DC交BD于點N.下列結(jié)論:
①BH=DH;②CH=(+1)EH;③= . 其中正確的是( 。
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點O為圓心的圓過點A(0,3),直線y=kx﹣3k+4與⊙O交于B、C兩點,則弦BC的長的最小值為( 。
A. 5 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=4km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時從觀測站O處測得該船位于北偏東60°的方向,求該船航行的距離(即AB的長).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件,使一邊在BC上,其余兩個頂點分別在邊AB、AC上.
(1)若這個矩形是正方形,那么邊長是多少?
(2)當(dāng)PQ的值為多少時,這個矩形面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極創(chuàng)建全國文明城市,某市對某路口的行人交通違章情況進行了天的調(diào)查,將所得數(shù)據(jù)繪制成如下統(tǒng)計圖(圖2不完整):
請根據(jù)所給信息,解答下列問題:
(1)第天,這一路口的行人交通違章次數(shù)是多少次?這天中,行人交通違章次的有多少天?
(2)請把圖2中的頻數(shù)直方圖補充完整;(溫馨提示:請畫在答題卷相對應(yīng)的圖上)
(3)通過宣傳教育后,行人的交通違章次數(shù)明顯減少.經(jīng)對這一路口的再次調(diào)查發(fā)現(xiàn),平均每天的行人交通違章次數(shù)比第一次調(diào)查時減少了次,求通過宣傳教育后,這一路口平均每天還出現(xiàn)多少次行人的交通違章?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)試說明DF是⊙O的切線;
(2)若AC=3AE,求tanC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com