【題目】如圖,點(diǎn)O為等邊三角形ABC內(nèi)一點(diǎn),連接OA,OB,OC,將線段BO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到BM,連接CM,OM.
(1)求證:AO=CM;
(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.
【答案】(1)見解析 (2)直角三角形,證明見解析
【解析】
(1)根據(jù)“BO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到BM”可知∠OBM=60°,OB=OM,即可證明△AOB≌△CMB,從而得到答案;
(2)由(1)可知AO=CM,根據(jù)OB=BM,∠OBM=60°,可知△OBM為等邊三角形,從而得到OB=OM,根據(jù)勾股定理的逆定理即可得到答案.
(1)證明:∵BO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到BM
∴∠OBM=60°,OB=BM,
∵△ABC為等邊三角形
∴∠ABC=60°,AB=CB
∴∠ABO+∠OBC=∠CBM+∠OBC=60°
∴∠ABO=∠CBM,
在△AOB和△CMB中,
∴△AOB≌△CMB(SAS),
∴AO=CM.
(2)△OMC是直角三角形;理由如下:
∵BO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到BM
∴∠OBM=60°,OB=BM,
∴△OBM為等邊三角形
∴OB=OM=10
由(1)可知OA=CM=8
在△OMC中,OM2=100,OC2+CM2=62+82=100,
∴OM2=OC2+CM2,
∴△OMC是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC,BD交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為lcm/s;同時(shí),直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為lcm/s,EF⊥BD,且與AD,BD,CD分別交于點(diǎn)E,Q.F,當(dāng)直線EF停止運(yùn)動(dòng)時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).解答下列問題:
(1)求菱形ABCD的面積;
(2)當(dāng)t=1時(shí),求QF長(zhǎng);
(3)是否存在某一時(shí)刻t,使四邊形APFD是平行四邊形?若存在,求出t值,若不存在,請(qǐng)說明理由;
(4)設(shè)△DEF的面積為s(cm2),試用含t的代數(shù)式表示S,并求t為何值時(shí),△DEF的面積與△BPC的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、﹣2、3、﹣4,這些卡片除數(shù)字外都相同.王興從口袋中隨機(jī)抽取一張卡片,鐘華從剩余的三張卡片中隨機(jī)抽取一張,求兩張卡片上數(shù)字之積.
(1)請(qǐng)你用畫樹狀圖或列表的方法,列出兩人抽到的數(shù)字之積所有可能的結(jié)果.
(2)求兩人抽到的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)B(0,3),點(diǎn)C(4,0)
(1)求線段BC的長(zhǎng).
(2)如圖1,點(diǎn)A(﹣1,0),D是線段BC上的一點(diǎn),若△BAD∽△BCA時(shí),求點(diǎn)D的坐標(biāo).
(3)如圖2,以BC為邊在第一象限內(nèi)作等邊△BCE,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的∠BAD=∠C=90,AB=AD,AE⊥BC于E,旋轉(zhuǎn)后能與重合.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)若AE=5㎝,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與和分別交于點(diǎn)和點(diǎn),與正比例函數(shù)圖象交于點(diǎn).
(1)求和的值
(2)求的面積
(3)在直線上是否存在異與點(diǎn)的另一點(diǎn),使得與的面積相等?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)進(jìn)行促銷,購物滿額即可獲得1次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)袋中裝有紅色、黃色、白色三種除顏色外都相同的小球,從袋子中摸出1個(gè)球,紅色、黃色、白色分別代表一、二、三等獎(jiǎng).
(1)若小明獲得1次抽獎(jiǎng)機(jī)會(huì),小明中獎(jiǎng)是 事件;(填隨機(jī)、必然、不可能)
(2)小明觀察一段時(shí)間后發(fā)現(xiàn),平均每8個(gè)人中會(huì)有1人抽中一等獎(jiǎng),2人抽中二等獎(jiǎng),若袋中共有24個(gè)球,請(qǐng)你估算袋中白球的數(shù)量;
(3)在(2)的條件下,如果在抽獎(jiǎng)袋中減少3個(gè)白球,那么抽獎(jiǎng)一次恰好抽中一等獎(jiǎng)的概率是多少?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是線段BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑作⊙O分別交AB、AC于E、F,連結(jié)EF,則線段EF長(zhǎng)度的最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com