【題目】“五一”期間,小張把容積為60升的油箱加滿后自駕出行,行駛一段路程后進入服務(wù)區(qū)停車休息,休息后,小張離開服務(wù)區(qū)繼續(xù)前行,為能順利到達目的地,小張需在相距S千米的加油站加油.若小張從出發(fā)點到服務(wù)區(qū)休息點行駛的路程為200千米,且這期間平均油耗為每千米0.12升.
(1)求小張離開服務(wù)區(qū)休息點時,油箱內(nèi)還有多少升汽油?
(2)記小張從離開服務(wù)區(qū)休息點到進入加油站加油期間的平均油耗為每千米a升,請寫出S與a的函數(shù)關(guān)系式;若0.08≤a≤0.1,求S的取值范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y元[
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠BAC=120°,AB=AC=2 .D為BC邊一點,且BD:DC=1:2.以D為一個點作等邊△DEF,且DE=DC連接AE,將等邊△DEF繞點D旋轉(zhuǎn)一周,在整個旋轉(zhuǎn)過程中,當(dāng)AE取得最大值時AF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點P,給出以下結(jié)論:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P(m,n)在拋物線y=ax2-4ax(a>0)上,E為拋物線的頂點.
(1)求點E的坐標(biāo)(用含a的式子表示);
(2)若點P在第一象限,線段OP交拋物線的對稱軸于點C,過拋物線的頂點E作x軸的平行線DE,過點P作x軸的垂線交DE于點D,連接CD,求證:CD∥OE;
(3)如圖2,當(dāng)a=1,且將圖1中的拋物線向上平移3個單位,與x軸交于A、B兩點,平移后的拋物線的頂點為Q,P是其x軸上方的對稱軸上的動點,直線AP交拋物線于另一點D,分別過Q、D作x軸、y軸的平行線交于點E,且∠EPQ=2∠APQ,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點D,點P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在10×10的網(wǎng)格中,有一格點△ABC(說明:頂點都在網(wǎng)格線交點處的三角形叫做格點三角形).
(1)將△ABC先向右平移5個單位,再向上平移2個單位,得到△A'B'C',請直接畫出平移后的△A'B'C';
(2)將△A'B'C'繞點C'順時針旋轉(zhuǎn)90°,得到△A'B'C',請直接畫出旋轉(zhuǎn)后的△A'B'C';
(3)在(2)的旋轉(zhuǎn)過程中,求點A'所經(jīng)過的路線長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=5,BC=8,若△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F對應(yīng),若以點A,D,E為頂點的三角形是等腰三角形,則m的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形紙片 ABCD 中, E 是 CD 的中點,將正方形紙片折疊,點 B 落在線段AE 上的點 G 處,折痕為 AF .若 AD=4 cm,則 CF 的長為___________cm .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com