【題目】如圖,在正方形中,相交于點(diǎn).嘉嘉作,在正方形外,,交于點(diǎn);淇淇作,,在正方形外,交于點(diǎn),兩人的作法中,能使四邊形是正方形的是(

A.只有嘉嘉B.只有淇淇C.嘉嘉和淇淇D.以上均不正確

【答案】C

【解析】

根據(jù)平行四邊形的判定方法先判定四邊形DOCP平行四邊形,再根據(jù)正方形的判定方法即可判斷.

∵四邊形是正方形,

ACBD

∴∠DOC=90,OD=OC

嘉嘉的:

,

根據(jù)兩組對邊分別平行的四邊形是平行四邊形,

∴四邊形DOCP平行四邊形

∵∠DOC=90,OD=OC,

∴四邊形DOCP正方形,嘉嘉的作法正確;

淇淇的:

,,

根據(jù)兩組對邊分別相等的四邊形是平行四邊形,

∴四邊形DOCP平行四邊形,

∵∠DOC=90,OD=OC

∴四邊形DOCP正方形,淇淇的作法也正確;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋中裝有5個只有顏色不同的球,其中3個黃球,2個黑球.

(1)求從袋中同時摸出的兩個球都是黃球的概率;

(2)現(xiàn)將黑球和白球若干個(黑球個數(shù)是白球個數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個球是黑球的概率是,求放入袋中的黑球的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,BC為O的切線,D為O上的一點(diǎn),CD=CB,延長CD交BA的延長線于點(diǎn)E.

(1)求證:CD為O的切線;

(2)若BD的弦心距OF=1,ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,對于一個圖形,通過2種不同的方法計算它的面積時,可以得到一個數(shù)學(xué)等式.例如圖①可以得到,請解答下列問題:

1)寫出圖②中所表示的等式: ;

2)利用(1)中所得到的結(jié)論,解決下面的問題:已知,,求的值;

3)小明同學(xué)用2張邊長為的正方形紙片、3張邊長為的正方形紙片,5張邊長分別為的長方形紙片拼出了一個長方形,那么該長方形較長一邊的長為多少?

4)小明同學(xué)又用張邊長為的正方形紙片,張邊長為的正方形紙片、張邊長分別為的長方形紙片拼出了一個面積為的長方形,請問一共用掉多少張紙片?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在線段BC上,∠EDB=∠C,BE⊥DE,垂足為E,DE與AB相交于點(diǎn)F.試探究線段BE與DF的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,是邊上的中線,的中點(diǎn),過點(diǎn)的平行線與的延長線相交于點(diǎn),連接

1)求證:四邊形為平行四邊形;

2)若,請寫出圖中所有與線段相等的線段(線段除外).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠色生態(tài)農(nóng)場生產(chǎn)并銷售某種有機(jī)產(chǎn)品,假設(shè)生產(chǎn)出的產(chǎn)品能全部售出.如圖,線段EF、折線ABCD分別表示該有機(jī)產(chǎn)品每千克的銷售價y1(元)、生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系.

(1)求該產(chǎn)品銷售價y1(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;

(2)直接寫出生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;

(3)當(dāng)產(chǎn)量為多少時,這種產(chǎn)品獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動點(diǎn)P從點(diǎn)B出發(fā)沿射線BC1cm/s的速度移動,設(shè)運(yùn)動的時間為t秒.

1)求BC邊的長;

2)當(dāng)△ABP為直角三角形時,求t的值;

3)當(dāng)△ABP為等腰三角形時,求t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD和四邊形CEFG都是正方形,且BC=CD,CE=CG,∠BCD=GCE=90°

1)求證:BCG≌△DCE;

2)求證:BGDE

查看答案和解析>>

同步練習(xí)冊答案