(2005•威海)關于x的一元二次方程x2-(k+1)x+k-2=0的根的情況是( )
A.有兩個相等的實數(shù)根
B.有兩個不相等的實數(shù)根
C.沒有實數(shù)根
D.無法判斷
【答案】分析:判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了.
解答:解:∵a=1,b=-(k+1),c=k-2,
∴△=[-(k+1)]2-4×1×(k-2)
=k2-2k+1+8=(k-1)2+8>0,
∴方程有兩個不相等的實數(shù)根.
故選B
點評:對于一元二次方程ax2+bx+c=0,(a≠0,且a,b,c是常數(shù))
若△>0則有兩不相等的實數(shù)根;
若△<0,則無實數(shù)根;
若△=0,則有兩相等的實數(shù)根.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、已知a﹑b為正整數(shù),a=b-2005,若關于x方程x2-ax+b=0有正整數(shù)解,則a的最小值是
95

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a為正整數(shù)a=b-2005,若關于x的方程x2-ax+b=0有正整數(shù)解,則a的最小值是多少?
(溫馨提示:先設方程的兩根為x1,x2,然后…)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山東省威海市中考數(shù)學試卷(解析版) 題型:解答題

(2005•威海)已知拋物線y=(k-1)x2+(2+4k)x+1-4k過點A(4,0).
(1)試確定拋物線的解析式及頂點B的坐標;
(2)在y軸上確定一點P,使線段AP+BP最短,求出P點的坐標;
(3)設M為線段AP的中點,試判斷點B與以AP為直徑的⊙M的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山東省威海市中考數(shù)學試卷(解析版) 題型:選擇題

(2005•威海)關于x的一元二次方程x2-(k+1)x+k-2=0的根的情況是( )
A.有兩個相等的實數(shù)根
B.有兩個不相等的實數(shù)根
C.沒有實數(shù)根
D.無法判斷

查看答案和解析>>

同步練習冊答案