如圖,在平面直角坐標系內(nèi),半徑為t的⊙D與x軸交于點A(1,0)、B(5,0),點D在第一象限,點C的坐標為(0,-2),過B點作BE⊥CD于點E.
(1)當t為何值時,⊙D與y軸相切?并求出圓心D的坐標;
(2)直接寫出,當t為何值時,⊙D與y軸相交、相離;
(3)直線CE與x軸交于點F,當△OCF與△BEF全等時,求點F的坐標.
(1)∵⊙D與x軸交于點A(1,0)、B(5,0),
∴D的橫坐標為3,
∴當t=3時,⊙D與y軸相切,
過點D作DH⊥AB于點H,連接DA,
∴BH=
1
2
AB=2,
∴DH=
9-4
=
5
,
∴D(3,
5
);

(2)t>3時,⊙D與y軸相交;
當t=2時,點D是AB的中點,在x軸上,不在第一象限;
所以2<t<3時,⊙D與y軸相離;

(3)由題意可知當△OCF與△BEF全等時,F(xiàn)B=FC,
設(shè)點F的坐標為(x,0),即OF=x,F(xiàn)B=OB-OF=5-x,
又OC=2,在直角三角形FOC中,
根據(jù)勾股定理得:FC=
x2+22

則有5-x=
x2+22
,解得:x=2.1,
∴F(2.1,0).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點A、B、C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,B為線段AD上一點,△ABC和△BDE都是等邊三角形,連接CE并延長交AD的延長線于點F,△ABC的外接圓⊙O交CF于點M.
(1)求證:BE是⊙O的切線;
(2)求證:AC2=CM•CF;
(3)若CM=
2
7
7
,MF=
12
7
7
,求BD;
(4)若過點D作DGBE交EF于點G,過G作GHDE交DF于點H,則易知△DGH是等邊三角形.設(shè)等邊△ABC、△BDE、△DGH的面積分別為S1、S2、S3,試探究S1、S2、S3之間的等量關(guān)系,請直接寫出其結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,直線l與⊙O相切于點C,AD⊥l,垂足是D.
求證:AC平分∠DAB.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直角坐標系中直線AB交x軸,y軸于點A(4,0)與B(0,-3),現(xiàn)有一半徑為1的動圓的圓心位于原點處,以每秒1個單位的速度向右作平移運動,則經(jīng)過______秒后動圓與直線AB相切.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖已知△ABC的一邊BC與以AC為直徑的⊙O相切于點C,若BC=4,AB=5,則sinB=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知:C是以AB為直徑的半圓O上一點,CH⊥AB于點H,直線AC與過B點的切線相交于點D,E為CH中點,連接AE并延長交BD于點F,直線CF交直線AB于點G.
(1)求證:①點F是BD中點;②CG是⊙O的切線;
(2)若FB=FE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖是某種圓形裝置的示意圖,圓形裝置中,⊙O的直徑AB=5,AB的不同側(cè)有定點C和動點P,tan∠CAB=
4
3
.其運動過程是:點P在弧AB上滑動,過點C作CP的垂線,與PB的延長線交于點Q.
(1)當PC=______時,CQ與⊙O相切;此時CQ=______.
(2)當點P運動到與點C關(guān)于AB對稱時,求CQ的長;
(3)當點P運動到弧AB的中點時,求CQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

⊙O的圓心到直線l的距離為3cm,⊙O的半徑為1cm,將直線l向垂直于l的方向平移,使l與⊙O相切,則平移的距離是( 。
A.1cmB.2cmC.4cmD.2cm或4cm

查看答案和解析>>

同步練習冊答案