【題目】請同學(xué)們完成下列甲,乙兩種商品從包裝到銷售的一系列問題;
(1)某包裝車間有22名工人,每人每小時(shí)可以包裝120個(gè)甲商品或者200個(gè)乙商品,且1個(gè)甲商品需要搭配2個(gè)乙商品裝箱,為使每天包裝的甲商品和乙商品剛好配置,應(yīng)安排包裝甲商品和乙商品的工人各多少名?
(2)某社區(qū)超市第一次用6000元購進(jìn)一批甲、乙兩種商品,其中甲商品的件數(shù)比乙商品件數(shù)的2倍少30件,兩種商品的進(jìn)價(jià)和售價(jià)如下圖所示:
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 22 | 30 |
售價(jià)(元/件) | 29 | 40 |
①超市將這批貨全部售出一共可以獲利多少元?
②該超市第二次分別以第一次同樣的進(jìn)價(jià)購進(jìn)第二批甲、乙兩種商品,其中乙商品的件數(shù)是第一批乙商品件數(shù)的3倍,甲商品的件數(shù)不變,甲商品按照原售價(jià)銷售,乙商品在原價(jià)的基礎(chǔ)上打折銷售,第二批商品全部售出后獲得的總利潤比第一批獲得的總利潤多720元,求第二批乙商品在原價(jià)基礎(chǔ)上打幾折銷售?
【答案】(1)應(yīng)安排10名工人包裝甲商品,12名工人包裝乙商品;(2)①兩種商品全部賣完可獲得1950元利潤;②第二次乙種商品是按原價(jià)打9折銷售.
【解析】
(1)設(shè)應(yīng)安排x名工人包裝甲商品,則安排(22﹣x)人生產(chǎn)乙商品,根據(jù)生產(chǎn)的乙商品的數(shù)量是甲商品的2倍,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;
(2)①設(shè)第一次購進(jìn)乙種商品m件,則購進(jìn)甲種商品(2m﹣30)件,根據(jù)總價(jià)=單價(jià)×數(shù)量,即可得出關(guān)于m的一元一次方程,再利用總利潤=每件的利潤×銷售數(shù)量即可求出銷售總利潤;
②設(shè)第二次乙種商品是按原價(jià)打y折銷售,根據(jù)總利潤=每件的利潤×銷售數(shù)量,即可得出關(guān)于y的一元一次方程,解之即可得出結(jié)論.
解:(1)設(shè)應(yīng)安排x名工人包裝甲商品,則安排(22﹣x)人生產(chǎn)乙商品,
依題意,得:200(22﹣x)=2×120x,
解得:x=10,
∴22﹣x=12.
答:應(yīng)安排10名工人包裝甲商品,12名工人包裝乙商品.
(2)①設(shè)第一次購進(jìn)乙種商品m件,則購進(jìn)甲種商品(2m﹣30)件,
依題意,得:30m+22×(2m﹣30)=6000,
解得:m=90,
∴2m﹣30=150,
(29﹣22)×150+(40﹣30)×90=1950(元).
答:兩種商品全部賣完可獲得1950元利潤.
②設(shè)第二次乙種商品是按原價(jià)打y折銷售,
依題意,得:(29﹣22)×150+(40×﹣30)×90×3=1950+720,
解得:y=9.
答:第二次乙種商品是按原價(jià)打9折銷售.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們將如圖所示的兩種排列形式的點(diǎn)的個(gè)數(shù)分別稱作“三角形數(shù)”(如1,3,6,10…)和“正方形數(shù)”(如1,4,9,16…),在小于200的數(shù)中,設(shè)最大的“三角形數(shù)”為m,最大的“正方形數(shù)”為n,則m+n的值為(_______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA⊥OC,OB⊥OD,下面結(jié)論:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正確的有________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(1)29-(-8)+
(2)(-3)÷
(3)-60×
(4)(-1)2019+|(-2)3+10|÷(-22)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在燈塔O處觀測到輪船A位于北偏西54°的方向,同時(shí)輪船B在南偏西15°的方向.
(1)∠AON= °;∠AOE= °;
(2)求∠WOB的補(bǔ)角及∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上有A,B,C三個(gè)點(diǎn),分別表示有理數(shù)﹣24,﹣10,10,動(dòng)點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)用含t的代數(shù)式表示P到點(diǎn)A和點(diǎn)C的距離:
PA=________,PC=________;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q從A點(diǎn)出發(fā),以每秒3個(gè)單位的速度向C點(diǎn)運(yùn)動(dòng),Q點(diǎn)到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動(dòng)到終點(diǎn)A.在點(diǎn)Q開始運(yùn)動(dòng)后,P,Q兩點(diǎn)之間的距離能否為2個(gè)單位?如果能,請求出此時(shí)點(diǎn)P表示的數(shù);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,連接BD(如圖a),點(diǎn)P沿梯形的邊,從點(diǎn)A→B→C→D→A移動(dòng),設(shè)點(diǎn)P移動(dòng)的距離為x,BP=y.
(1)求證:∠A=2∠CBD;
(2)當(dāng)點(diǎn)P從點(diǎn)A移動(dòng)到點(diǎn)C時(shí),y與x的函數(shù)關(guān)系如圖(b)中的折線MNQ所示,試求CD的長.
(3)在(2)的情況下,點(diǎn)P從A→B→C→D→A移動(dòng)的過程中,△BDP是否可能為等腰三角形?若能,請求出所有能使△BDP為等腰三角形的x的取值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,a、b滿足|a+2|+|b﹣4|=0.
(1)點(diǎn)A表示的數(shù)為 ;點(diǎn)B表示的數(shù)為 ;
(2)一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),
①當(dāng)t=1時(shí),甲小球到原點(diǎn)的距離為 ;乙小球到原點(diǎn)的距離為 ;當(dāng)t=3時(shí),甲小球到原點(diǎn)的距離為 ;乙小球到原點(diǎn)的距離為 ;
②試探究:甲,乙兩小球到原點(diǎn)的距離可能相等嗎?若不能,請說明理由.若能,請求出甲,乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一批 30 瓦的 LED 燈泡和普通白熾燈泡進(jìn)行銷售,其進(jìn)價(jià)與標(biāo)價(jià)如下表:
LED 燈泡 | 普通白熾燈泡 | |
進(jìn)價(jià)(元) | 45 | 25 |
標(biāo)價(jià)(元) | 60 | 30 |
(1)該商場購進(jìn)了 LED 燈泡與普通白熾燈泡共 300 個(gè),LED 燈泡按標(biāo)價(jià)進(jìn)行銷售,而普通 白熾燈泡打九折銷售,當(dāng)銷售完這批燈泡后可獲利 3 200 元,求該商場購進(jìn) LED 燈泡與 普通白熾燈泡的數(shù)量分別為多少個(gè)?
(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計(jì)劃再次購進(jìn)這兩種燈泡 120 個(gè), 在不打折的情況下,請問如何進(jìn)貨,銷售完這批燈泡時(shí)獲利最多且不超過進(jìn)貨價(jià)的 30%, 并求出此時(shí)這批燈泡的總利潤為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com