代數(shù)式x2-9與x2-6x+9的公因式是________.

x-3
分析:代數(shù)式x2-9用平方差公式分解;代數(shù)式x2-6x+9用完全平方公式分解.
解答:x2-9=(x-3)(x+3);
x2-6x+9=(x-3)2
故公因式為x-3.
點(diǎn)評(píng):本題主要考查公因式的確定,利用平方差公式和完全平方公式分解因式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、代數(shù)式x2-9與x2-6x+9的公因式是
x-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若代數(shù)式
x-1
3
x
2
-3
的值相等,則x=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、代數(shù)式x2-x與代數(shù)式A的和為-x2-x+1則代數(shù)式A=
-2x2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:
在直角坐標(biāo)系中,已知平面內(nèi)A(x1,y2)、B(x1,y2)兩點(diǎn)坐標(biāo),則A、B兩點(diǎn)之間的距離等于
(x2-x2)2(y2-y1)2

例:說明代數(shù)式
x2+1
+
(x-3)2+4
的幾何意義,并求它的最小值.
解:
x2+1
+
(x-3)2+4
=
(x-0)2+(0-1)2
+
(x-3)2+(0-2)2
,如圖,建立平面直角坐標(biāo)系,點(diǎn)P(x,0)是x軸上一點(diǎn),則
(x-0)2+(0-1)2
可以看成點(diǎn)P與點(diǎn)A(0,1)的距離,
(x-3)2+(0-2)2
可以看成點(diǎn)P與點(diǎn)B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長度之和,它的最小值就是PA+PB的最小值.
設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′,則PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而點(diǎn)A′、B間的直線段距離最短,所以PA′+PB的最小值為線段A′B的長度.為此,構(gòu)造直角三角形A′CB,因?yàn)锳′C=
3
3
,CB=
3
3
,所以A′B=
3
2
3
2
,即原式的最小值為
3
2
3
2

根據(jù)以上閱讀材料,解答下列問題:
(1)完成上述填空.
(2)代數(shù)式
(x-i)2+1
+
(x-2)2+9
的值可以看成平面直角坐標(biāo)系中點(diǎn)P(x,0)與點(diǎn)A(1,1)、點(diǎn)B
(2,3)
(2,3)
的距離之和.(填寫點(diǎn)B的坐標(biāo))
(3)求代數(shù)式
x2+49
+
x2-12x+37
的最小值.(畫圖計(jì)算)

查看答案和解析>>

同步練習(xí)冊(cè)答案