(本小題滿分10分)已知:如圖,⊙與軸交于C、D兩點,圓心的坐標
為(1,0),⊙的半徑為,過點C作⊙的切線交軸于點B(-4,0)
1.(1)求切線BC的解析式;
2.(2)若點P是第一象限內(nèi)⊙上一點,過點P作⊙A的切線與直線BC相交于點G,
且∠CGP=120°,求點的坐標;
3.(3)向左移動⊙(圓心始終保持在軸上),與直線BC交于E、F,在移動過程中是否存在點,使得△AEF是直角三角形?若存在,求出點 的坐標,若不存在,請說明理由.
1.(1)連接,∵是⊙A的切線,∴.
∴.
∵,∴,∴.
∴△∽△,∴.
即,∴.∴點坐標是(0,2).
設直線的解析式為,∵該直線經(jīng)過點B(-4,0)與點(0,2),
∴ 解得
∴該直線解析式為.
2.(2)連接,過點作.
由切線長定理知
.
在中,∵,
∴.
在中,由勾股定理得
.
∴ .
又∵.
∴∽,∴,
∴.
則是點的縱坐標,
∴,解得.
∴點的坐標.……………4分
3.(3)如圖示,當在點的右側(cè)時
∵、在⊙上,∴.
若△是直角三角形,則,且為等腰直角三角形.
過點作,在中由三角函數(shù)可知
.
又∵∽ ,
∴ ,
∴.
∴,
∴點 坐標是.
當在點的左側(cè)時:同理可求點 坐標是.……………6分
【解析】略
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011年河北省中考模擬試卷數(shù)學卷 題型:解答題
(本小題滿分10分)
如圖,在平面直角坐標系中,直線L:y=-2x-8分別與x軸、y軸相交于A、B兩點,點P(0,k)是y軸的負半軸上的一個動點,以P為圓心,3為半徑作⊙P。
(1)連結PA,若PA=PB,試判斷⊙P與X軸的位置關系,并說明理由;
(2)當K為何值時,以⊙P與直線L的兩個交點和圓心P為頂點的三角形是正三角形?
查看答案和解析>>
科目:初中數(shù)學 來源:2011年四川省鹽源縣民族中學中考模擬試題數(shù)學卷 題型:解答題
(本小題滿分10分)如圖,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.動點P從D點出發(fā)沿DC以每秒1個單位的速度向終點C運動,動點Q從C點出發(fā)沿CB以每秒2個單位的速度向B點運動.兩點同時出發(fā),當P點到達C點時,Q點隨之停止運動.
【小題1】(1)求梯形ABCD的面積;
【小題2】(2)當P點離開D點幾秒后,PQ//AB;
【小題3】(3)當P、Q、C三點構成直角三角形時,求點P從點D運動的時間?
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學卷 題型:解答題
(本小題滿分10分)如圖,在平面直角坐標系中,點A、B、C、P的坐標分別為(0,1)、(-1,0)、(1,0)、(-1,-1)。
【小題1】(1)求經(jīng)過A、B、C三點的拋物線的表達式;
【小題2】(2)以P為位似中心,將△ABC放大,使得放大后的△A1B1C1
與△OAB對應線段的比為3:1,請在右圖網(wǎng)格中畫出放大
后的△A1B1C1;(所畫△A1B1C1與△ABC在點P同側(cè));
【小題3】(3)經(jīng)過A1、B1、C1三點的拋物線能否由(1)中的拋物線平
移得到?請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆河南省商丘市九年級上學期期末考試數(shù)學卷 題型:解答題
(本小題滿分10分)
在圖1至圖3中,直線MN與線段AB相交
于點O,∠1 = ∠2 = 45°.
【小題1】(1)如圖1,若AO = OB,請寫出AO與BD
的數(shù)量關系和位置關系;
【小題2】(2)將圖1中的MN繞點O順時針旋轉(zhuǎn)得到
圖2,其中AO = OB.
求證:AC = BD,AC ⊥ BD;
【小題3】(3)將圖2中的OB拉長為AO的k倍得到
圖3,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com