11.已知m是絕對值最小的有理數(shù),且-2a2by+1與3axb3是同類項(xiàng),試求多項(xiàng)式2x2-3xy+6y2-3mx2+mxy-9my2的值.

分析 首先依據(jù)絕對值的性質(zhì)可得到m=0,然后依據(jù)同類項(xiàng)的定義得到x、y的值代入代數(shù)化簡,求值即可.

解答 解:∵m是絕對值最小的有理數(shù),
∴m=0.
將m=0、x=2,y=2代入得:原式=20.

點(diǎn)評 本題主要考查的是同類項(xiàng)的定義,依據(jù)同類項(xiàng)的定義和絕對值的性質(zhì)求得m、x、y的值是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四邊形ABCD為正方形,點(diǎn)A坐標(biāo)為(0,1),點(diǎn)B坐標(biāo)為(0,-2),反比例函數(shù)y=$\frac{k}{x}$的圖象經(jīng)過點(diǎn)C,一次函數(shù)y=ax+b的圖象經(jīng)過A、C兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.某公司要印制產(chǎn)品宣傳材料,l1反映了甲印刷廠的收費(fèi)y1(元)與印制數(shù)量x(份)間的關(guān)系,l2反映了乙印刷廠的收費(fèi)y2(元)與印制數(shù)量x(份)間的關(guān)系.
(1)觀察圖象,當(dāng)印制多少份時(shí),甲、乙印刷廠的收費(fèi)相同?
(2)求l1、l2對應(yīng)的函數(shù)表達(dá)式;
(3)通過計(jì)算說明:公司擬投入4000元印制宣傳材料,選擇哪家印刷廠印制的宣傳材料份數(shù)較多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知等邊△ABC的邊長為2,E,F(xiàn),G分別在邊AB,BC,CA上,且△EFG也是等邊三角形.
(1)求證:AG=BE;
(2)設(shè)AE=x,求x的值,使△EFG的面積為$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.從A,B兩題中任選一題解答,我選擇A.
A.如圖(1)是兩棵樹在同一盞路燈下的影子.
(1)確定該路燈泡所在的位置;
(2)如果此時(shí)小穎所在位置恰好與這兩棵樹所在的位置共線(三點(diǎn)在一條直線上),請畫出圖中表示小穎影子的線段AB.
B.如圖(2),小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),2秒后到達(dá)點(diǎn)D,此時(shí)他在某一燈光下的影子為DA,繼續(xù)按此速度行走2秒到達(dá)點(diǎn)F,此時(shí)他在同一燈光下的影子落在其身后的線段DF上,測得此時(shí)影長MF為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達(dá)點(diǎn)H.他在同一燈光下的影子恰好是HB.圖中線段CD,EF,GH表示小明的身高.
(1)請?jiān)趫D中畫出小明的影子MF;
(2)若A、B兩地相距12米,則小明原來的速度為1.5m/s.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,線段AB=24,動(dòng)點(diǎn)P從A出發(fā),以每秒2個(gè)單位的速度沿射線AB運(yùn)動(dòng),M為AP的中點(diǎn).
(1)出發(fā)3秒后,AM=3,PB=18.(不必說明理由)
(2)出發(fā)幾秒后,AP=3BP?
(3)當(dāng)P在AB延長線上運(yùn)動(dòng)時(shí),N為BP的中點(diǎn),下列兩個(gè)結(jié)論:①M(fèi)A+PN的值不變;②MN長度不變,選擇一個(gè)正確的結(jié)論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在Rt△ABC中,∠C=90°,Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到Rt△ADE的位置,點(diǎn)E在斜邊AB上,連結(jié)BD.過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)如圖1若點(diǎn)F與點(diǎn)A重合,求證:AC=BC;
(2)若∠DAF=∠DBA,如圖2,當(dāng)點(diǎn)F在線段CA的延長線上時(shí),判斷線段AF與線段BE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,∠BAE=75°,∠DAE=15°,AC是∠BAD的平分線,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在△ABC中,D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別是E,F(xiàn),且BE=CF.求證:
(1)AD是△ABC的角平分線;
(2)AE=AF.

查看答案和解析>>

同步練習(xí)冊答案