【題目】隨著智能分揀設備在快遞業(yè)務中的普及,快件分揀效率大幅提高.使用某品牌智能分揀設備,每人每小時分揀的快件量是傳統(tǒng)分揀方式的25倍,經(jīng)過測試,由5人用此設備分揀8000件快件的時間,比20人用傳統(tǒng)方式分揀同樣數(shù)量的快件節(jié)省4小時.某快遞中轉站平均每天需要分揀10萬件快件,如果使用此智能分揀設備,每天只需要安排多少名工人就可以完成分揀工作(每天工作時間為8小時).

【答案】每天只需要安排6名工人就可以完成分揀工作.

【解析】

設用傳統(tǒng)方式每人每小時可分揀x件,則用智能分揀設備后每人每小時可分揀25x件,根據(jù)工作時間=工作總量÷工作效率結合5人用此設備分揀8000件快件的時間比20人用傳統(tǒng)方式分揀同樣數(shù)量的快件節(jié)省4小時,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出x的值,再利用需要人數(shù)=工作總量÷每人每天用智能分揀設備后的工作量,即可求出結論(利用進一法取整).

解:設用傳統(tǒng)方式每人每小時可分揀x件,則用智能分揀設備后每人每小時可分揀25x件,

依題意,得:,

解得:x84

經(jīng)檢驗,x84是原方程的解,且符合題意,

100000÷(84×25×8)=5(人)……16000(件),

5+16(人).

答:每天只需要安排6名工人就可以完成分揀工作.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EF是正方形ABCD的對角線AC上的兩點,AC8AECF1,則四邊形BEDF的周長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列四個關于是否成反比例的命題,判斷它們的真假.

(1)面積一定的等腰三角形的底邊長和底邊上的高成反比例;

(2)面積一定的菱形的兩條對角線長成反比例;

(3)面積一定的矩形的兩條對角線長成反比例;

(4)面積一定的直角三角形的兩直角邊長成比例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.

(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8分)如圖,△A1B1C1△ABC向右平移四個單位長度后得到的,且三個頂點的坐標分別為A11,1),B14,2),C13,4).

1)請畫出△ABC,并寫出點A、BC的坐標;

2)求出△AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64tan50°≈1.20).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀當水面的寬度為10m,橋洞與水面

的最大距離是5m

1經(jīng)過討論同學們得出三種建立平面直角坐標系的方案如下圖

你選擇的方案是_____填方案一,方案二,或方案三),B點坐標是______,求出你所選方案中的拋物線的表達式;

2因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P,給出如下定義記點Px軸的距離為,y軸的距離為,,則稱為點P的最大距離,則稱為點P的最大距離

例如P, 到到x軸的距離為4,y軸的距離為3因為34所以點P的最大距離為.

1①點A2, 的最大距離為________

②若點B, 的最大距離為的值為________;

2若點C在直線,且點C的最大距離為求點C的坐標;

3若⊙O存在M,使點M的最大距離為,直接寫出⊙O的半徑r的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在樓房MN前有兩棵樹與樓房在同一直線上,且垂直于地面,為了測量樹AB、CD的高度,小明爬到樓房頂部M處,光線恰好可以經(jīng)過樹CD的頂站C點到達樹AB的底部B點,俯角為45°,此時小亮測得太陽光線恰好經(jīng)過樹CD的頂部C點到達樓房的底部N點,與地面的夾角為30°,樹CD的影長DN為15米,請求出樹AB、CD的高度.(結果保留根號)

查看答案和解析>>

同步練習冊答案