【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E.F分別在邊AB.BC上,且AE=BF=1,CE.DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tan∠OCD=,④S△ODC=S四邊形BEOF中,正確的有_______________________.
【答案】①③④
【解析】
由正方形的ABCD的邊長(zhǎng)為4,AE=BF=1,利用SAS易證得△EBC≌△FCD,然后全等三角形的對(duì)應(yīng)角相等,易證得①∠DOC=90°正確;②由線段垂直平分線的性質(zhì)與正方形的性質(zhì),可得②錯(cuò)誤;易證得∠OCD=∠DFC,即可求得③正確;由全等三角形易證得④正確.
∵正方形的ABCD的邊長(zhǎng)為4,
∴BC=CD=4,∠B=∠DCF=90°,
∵AE=BF=1,
∴BE=CF=4-1=3,
在△EBC和△FCD中,
,
∴△EBC≌△FCD(SAS),
∴∠CFD=∠BEC,
∴∠BCE+∠BEC=∠BCE+∠CFD=90°,
∴∠DOC=90°,
故①正確;
連接DE,如圖所示:
若OC=OE,
∵DF⊥EC,
∴CD=DE,
∵CD=AD<DE(矛盾),
故②錯(cuò)誤;
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,
∴∠OCD=∠DFC,
∴tan∠OCD=tan∠DFC=,
故③正確;
∵△EBC≌△FCD,
∴,
∴,
即S△ODC=S四邊形BEOF,
故④正確;
故答案為: ①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個(gè)數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是實(shí)驗(yàn)室中的一種擺動(dòng)裝置,BC在地面上,支架ABC是底邊為BC的等腰直角三角形,擺動(dòng)臂AD可繞點(diǎn)A旋轉(zhuǎn),擺動(dòng)臂DM可繞點(diǎn)D旋轉(zhuǎn),AD=30,DM=10.
(1)在旋轉(zhuǎn)過程中,
①當(dāng)A,D,M三點(diǎn)在同一直線上時(shí),求AM的長(zhǎng).
②當(dāng)A,D,M三點(diǎn)為同一直角三角形的頂點(diǎn)時(shí),求AM的長(zhǎng).
(2)若擺動(dòng)臂AD順時(shí)針旋轉(zhuǎn)90°,點(diǎn)D的位置由△ABC外的點(diǎn)D1轉(zhuǎn)到其內(nèi)的點(diǎn)D2處,連結(jié)D1D2,如圖2,此時(shí)∠AD2C=135°,CD2=60,求BD2的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①線段是的直徑,點(diǎn)在上,點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),直徑的垂線與的平行線相交于點(diǎn)連接設(shè)
求的取值范圍;
如圖②點(diǎn)是線段與的交點(diǎn),若求證:直線與相切;
如圖③當(dāng)時(shí),連接判斷四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圓O中,弦AB與CD相交于點(diǎn)E,且弧AC與弧BD相等.點(diǎn)D在劣弧AB上,聯(lián)結(jié)CO并延長(zhǎng)交線段AB于點(diǎn)F,聯(lián)結(jié)OA、OB.當(dāng)OA=,且tan∠OAB=.
(1)求弦CD的長(zhǎng);
(2)如果△AOF是直角三角形,求線段EF的長(zhǎng);
(3)如果S△CEF=4S△BOF,求線段AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點(diǎn)P在BC邊上,將△CDP沿DP折疊,點(diǎn)C落在點(diǎn)E處,PE、DE分別交AB于點(diǎn)O、F,且OP=OF,則cos∠ADF的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:把一次函數(shù)y=kx+b的一次項(xiàng)系數(shù)和常數(shù)項(xiàng)互換得y=bx+k,我們稱y=kx+b和y=bx+k(其中k·b≠0,且|k|≠|(zhì)b|))為互助一次函數(shù),例如:y=-2x+3和y=3x-2就是互助一次函數(shù).如圖1所示,一次函數(shù)y=kx+b和它的互助一次函數(shù)的圖象1,2交于點(diǎn)P,1,2與x軸、y軸分別交于點(diǎn)A,B和點(diǎn)C,D.
(1)如圖1所示,當(dāng)k=-1,b=5時(shí),直接寫出點(diǎn)P的坐標(biāo)是_________.
(2)如圖2所示,已知點(diǎn)M(-1,1.5),N(-2,0).試探究隨著k,b值的變化,MP+NP的值是否發(fā)生變化,若不變,求出MP+NP的值;若變化,求出使MP+NP取最小值時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店以每件50元的價(jià)格購進(jìn)兩種服裝,已知銷售30件種服裝和40件種服裝共獲利潤(rùn)1000元,銷售40件種服裝和50件種服裝共獲利潤(rùn)1300元.
(1)求兩種服裝每件的售價(jià);
(2)若該服裝店準(zhǔn)備購進(jìn)兩種服裝共80件,并規(guī)定種服裝不少于種服裝的,設(shè)購進(jìn)種服裝件,求利潤(rùn)(元)與(件)之間的函數(shù)解析式,并求出當(dāng)取何值時(shí),利潤(rùn)最大,最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD,兩條對(duì)角線相交于O點(diǎn),過點(diǎn)O作AC的垂線EF,分別交AD、BC于E、F點(diǎn),連結(jié)CE,若OCcm,CD=4cm,則DE的長(zhǎng)為( )
A.cmB.5cmC.3cmD.2cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com