解方程x2+2x-
6
x2+2x
=5
時,令y=x2+2x,原方程可化為( 。
A、y2-5y-6=0
B、y2-6y-5=0
C、y2+5y-6=0
D、y2+6y-5=0
分析:根據(jù)方程的特點,設y=x2+2x,可將方程中的x全部換成y,轉化為關于y的分式方程,去分母轉化為一元二次方程.
解答:解:把y=x2+2x代入原方程得:y-6×
1
y
=5,
方程兩邊同乘以y整理得:y2-5y-6=0,
故選A.
點評:換元法解分式方程時常用方法之一,它能夠把一些分式方程化繁為簡,化難為易,對此應注意總結能用換元法解的分式方程的特點,尋找解題技巧.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•蘭州)用配方法解方程x2-2x-1=0時,配方后得的方程為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•呼倫貝爾)用配方法解方程x2-2x-5=0時,原方程應變形為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明在解方程x2=2x時只求出了一個根x=2,則被他漏掉的一個根是
x=0
x=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解題:
我們知道一元二次方程是轉化為一元一次方程來解的,例如:解方程x2-2x=0,通過因式分解將方程化為x(x-2)=0,從而得到x=0或x-2=0兩個一元一次方程,通過解這兩個一元一次方程,求得原方程的解.又如:解方程:x2-2x-3=0,通過配方,將方程化為(x-1)2-4=0,(x-1+2)(x-1-2)=0,即:(x+1)(x-3)=0,從而得到x+1=0或x-3=0兩個一元一次方程,從而求得原方程的解.
請你仔細閱讀上述內容,利用上述轉化方法解下列一元二次不等式:
(1)2x(x-1)-3(x-1)<0;
(2)x2+6x+5>0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

認真閱讀以下材料,并解答問題:
(1)配方:利用完全平方公式,把二次三項式寫成(a-k)2+h的形式.
例:x2-2x=x2-2•1•x+12-12=(x-1)2-1
(2)利用配方法解方程ax2+bx+c=0(a≠0)
例:解方程x2-2x-3=0
x2-2x=3
x2-2•1•x+12=3+12
(x-1)2=4
x-1=±2
∴x1=3,x2=-1
問題:(1)把多項式直接寫成(a-k)2+h的形式:x2-6x-3=
(x-3)2-12
(x-3)2-12

(2)用配方法解方程:x2+6x+8=0.

查看答案和解析>>

同步練習冊答案