【題目】如圖,點(diǎn)P在∠MAN內(nèi),PA平分∠MAN,PB⊥AM于點(diǎn)B,PC⊥AN于點(diǎn)C,點(diǎn)D是射線AM上點(diǎn)B右側(cè)的一個定點(diǎn).
(1)作經(jīng)過A,P,D三點(diǎn)的圓;(保留作圖痕進(jìn),不寫作法)
(2)設(shè)圓與AN交于點(diǎn)E,∠MAN=60°,PA=4,求AE+AD的值.
【答案】(1)見解析;(2)4
【解析】
(1)作AP和AD的垂直平分線,兩條直線的交點(diǎn)即為過A、P、D三點(diǎn)的圓心;
(2)連接PE、PD證明△PCE與△PBD全等即可求解.
解:(1)如圖所示:
作AP和AD的垂直平分線,兩條線相交于點(diǎn)O,
以點(diǎn)為圓心,OA為半徑的圓即為所求作的圖形;
(2)連接PE、PD,
∵PA平分∠MAN,PB⊥AD于點(diǎn)B,PC⊥AN于點(diǎn)C,
∴PB=PC,
在圓中,∵∠EAP=∠DAP,
∴PE=PD,
在△PCE和△PBD中,
∵∠PCE=∠PBD=90°,PB=PC,PE=PD.
∴Rt△PCE≌Rt△PBD(HL).
∴CE=BD.
∵∠MAN=60°,PA平分∠MAN,
∴∠PAB=30°,PA=4,
∴AB=2,
∴AE+AD=2AB=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入﹣成本);并求出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2x﹣3.
(1)求二次函數(shù)的頂點(diǎn)坐標(biāo);
(2)求函數(shù)與x軸交點(diǎn)坐標(biāo);
(3)用五點(diǎn)法畫函數(shù)圖象
x | … | … | |||||
y | … | … |
(4)當(dāng)﹣3<x<0時(shí),則y的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點(diǎn)A與原點(diǎn)重合,點(diǎn)B在y軸的正半軸上,點(diǎn)D在x軸的負(fù)半軸上,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至正方形AB′C′D′的位置,B′C′與CD相交于點(diǎn)M,則M的坐標(biāo)為( 。
A.(1,)B.(﹣1,)C.(1,)D.(﹣1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,拋物線經(jīng)過點(diǎn)A,B.
(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)設(shè)點(diǎn)M(m,0)為線段OA上一動點(diǎn),過點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P,N.
①求PN的最大值;
②若以B,P,N為頂點(diǎn)的三角形與△APM相似,請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MAN=90°,點(diǎn)C在邊AM上,AC=4,點(diǎn)B為邊AN上一動點(diǎn),連接BC,△A′BC與△ABC關(guān)于BC所在直線對稱,點(diǎn)D,E分別為AC,BC的中點(diǎn),連接DE并延長交A′B所在直線于點(diǎn)F,連接A′E.當(dāng)△A′EF為直角三角形時(shí),AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點(diǎn)B的坐標(biāo)為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)P作PD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE=DE.
①求點(diǎn)P的坐標(biāo);
②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶,別稱“山城”、“霧都”,旅游資源豐富,自然人文旅游景點(diǎn)獨(dú)具特點(diǎn).近年來,重慶以其獨(dú)特“3D魔幻”般的城市魅力吸引了眾多海內(nèi)外游客,成為名副其實(shí)的旅游打卡網(wǎng)紅城市.某中學(xué)想了解該校九年級1200名學(xué)生對重慶自然人文旅游景點(diǎn)的了解情況,從九(1)、九(2)班分別抽取了30名同學(xué)進(jìn)行測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析.下面給出了部分信息:
a.測試成績分成5組,其中A組:50<x≤60,B組:60<x≤70,C組:70<x≤80,D組:80<x≤90,E組:90<x≤100.測試成績統(tǒng)計(jì)圖如下:
b.九(2)班D組的測試成績分別是:81、82、82、83、84、85、86、87、88、89、89、90、90、90.
c.九(1)(2)班測試成績的平均數(shù)、中位數(shù)、眾數(shù)如下:
課程 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
九(1) | 84.2 | 84 | 89 |
九(2) | 84.6 | π | 90 |
根據(jù)以上信息,回答下列問題:
(1)根據(jù)題意,直接寫出m,n的值:m= ,n= ;九(2)班測試成績扇形統(tǒng)計(jì)圖中A組的圓心角α= °;
(2)在此次測試中,你認(rèn)為 班的學(xué)生對重慶自然人文景點(diǎn)更了解(填“九(1)”或“九(2)”),請說明理由(一條理由即可): ;
(3)假設(shè)該校九年級學(xué)生都參加此次測試,測試成績大于90分為優(yōu)秀,請估計(jì)該校九年級對重慶自然人文景點(diǎn)的了解達(dá)到優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李在景區(qū)銷售一種旅游紀(jì)念品,已知每件進(jìn)價(jià)為6元,當(dāng)銷售單價(jià)定為8元時(shí),每天可以銷售200件.市場調(diào)查反映:銷售單價(jià)每提高1元,日銷量將會減少10件,物價(jià)部門規(guī)定:銷售單價(jià)不能超過12元,設(shè)該紀(jì)念品的銷售單價(jià)為x(元),日銷量為y(件),日銷售利潤為w(元).
(1)求y與x的函數(shù)關(guān)系式.
(2)要使日銷售利潤為720元,銷售單價(jià)應(yīng)定為多少元?
(3)求日銷售利潤w(元)與銷售單價(jià)x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時(shí),日銷售利潤最大,并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com