【題目】甲是乙現(xiàn)在的年齡時,乙8歲,乙是甲現(xiàn)在的年齡時,甲26歲,那么( )

A. 甲比乙大6 B. 甲比乙大9

C. 乙比甲大18 D. 乙比甲大34

【答案】A

【解析】

設(shè)甲現(xiàn)在的年齡是x歲,根據(jù)已知甲是乙現(xiàn)在的年齡時,乙8歲.乙是甲現(xiàn)在的年齡時,甲26歲,可列方程求解.

解:設(shè)甲現(xiàn)在的年齡是x歲,則乙現(xiàn)在的年齡為(2x26)歲,

根據(jù)題意得:x822x26

解得x20

2x2614歲,

20146

答:甲比乙大6歲;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的標(biāo)價為200元,8折銷售仍賺40元,則商品進(jìn)價為 ( )

A. 100元 B. 120元 C. 140元 D. 160元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上與原點之間的距離小于5的表示整數(shù)的點共有 個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與直線AB相交于A(﹣3,0),B(0,3)兩點.

(1)求這條拋物線的解析式;

(2)設(shè)C是拋物線對稱軸上的一動點,求使∠CBA=90°的點C的坐標(biāo);

(3)探究在拋物線上是否存在點P,使得△APB的面積等于3?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線與x軸、y軸的交點分別為A、B,將OBA對折,使點O的對應(yīng)點H落在直線AB上,折痕交x軸于點C.

(1)直接寫出點C的坐標(biāo),并求過A、B、C三點的拋物線的解析式;

(2)若拋物線的頂點為D,在直線BC上是否存在點P,使得四邊形ODAP為平行四邊形?若存在,求出點P的坐標(biāo);若不存在,說明理由;

(3)設(shè)拋物線的對稱軸與直線BC的交點為T,Q為線段BT上一點,直接寫出|QA﹣QO|的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的一個角是100°,其底角是________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù):2,1,x,73,53,2的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是( )

A. 2 B. 2.5 C. 3 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與坐標(biāo)軸分別交于點A(0,8)、B(8,0)和點E,動點C從原點O開始沿OA方向以每秒1個單位長度移動,動點D從點B開始沿BO方向以每秒1個單位長度移動,動點C、D同時出發(fā),當(dāng)動點D到達(dá)原點O時,點C、D停止運(yùn)動.

(1)直接寫出拋物線的解析式: ;

(2)求△CED的面積S與D點運(yùn)動時間t的函數(shù)解析式;當(dāng)t為何值時,△CED的面積最大?最大面積是多少?

(3)當(dāng)△CED的面積最大時,在拋物線上是否存在點P(點E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列從左到右的變形,屬于因式分解的是( )

A. (a+1)(a-1)=a2-1 B. 2a-2b=2(a-b)

C. a2-2a+1=a(a-2)+1 D. a+2b=(a+b)+b

查看答案和解析>>

同步練習(xí)冊答案