【題目】有一種牛奶軟包裝盒如圖1所示.為了生產(chǎn)這種包裝盒,需要先畫出展開圖紙樣.

(1)如圖2給出三種紙樣甲.乙.丙,在甲.乙.丙中,正確的有________.

(2)從已知正確的紙樣中選出一種,在原圖上標注上尺寸.

(3)利用你所選的一種紙樣,求出包裝盒的側(cè)面積和表面積(側(cè)面積與兩個底面積的和)

【答案】(1)甲,丙;(2)詳見解析;(3)2ah+2bh+2ab

【解析】試題分析:(1)根據(jù)長方體的展開圖特征即可求解;

(2)找到對應邊,標注上尺寸;

(3)根據(jù)長方體的側(cè)面積和表面積公式計算即可.

試題解析:解:(1)甲,丙;

(2)標注尺寸只需在甲圖或丙圖標出一種即可

(3)S側(cè)=(b+a+b+ah=2ah+2bhS=S側(cè)+2S=2ah+2bh+2ab

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我市某校為了創(chuàng)建書香校園,去年購進一批圖書.經(jīng)了解,科普書的單價比文學書的單價多4元,用12000元購進的科普書與用8000元購進的文學書本數(shù)相等.

1)文學書和科普書的單價各多少錢?

2)今年文學書和科普書的單價和去年相比保持不變,該校打算用10000元再購進一批文學書和科普書,問購進文學書550本后至多還能購進多少本科普書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ADB=ADC,則不一定能使△ABD≌△ACD的條件是(  )

A. AB=AC B. BD=CD C. B=C D. BAD=CAD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點P從點Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點P為圓心, cm為半徑的圓與△ABC的邊相切(切點在邊上),請寫出t可取的一切值(單位:秒)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學的知識,回答下列問題:

(1)小明總共剪開了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認為他應該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補全.

(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點D.
(1)如圖①,當直線l與⊙O相切于點C時,求證:AC平分∠DAB;

(2)如圖②,當直線l與⊙O相交于點E,F(xiàn)時,求證:∠DAE=∠BAF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,B、C、D三點在同一條直線上,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結(jié)論是( 。

A. A與D互為余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一只甲蟲在55的方格(每一格邊長為1)上沿著網(wǎng)格線運動,A處出發(fā)去看望B、C、D處的甲蟲,規(guī)定:向上向右為正,向下向左為負.例如:從AB記為:(+1,+3);從CD 記為:(+1,-2),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.

(1)填空:記為 , ), 記為 );

(2)若甲蟲的行走路線為:,請你計算甲蟲走過的路程.

(3)若這只甲蟲去Q的行走路線依次為:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),請依次在圖2標出點M、N、P、Q的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1) (2)

(3)(-2)-(+4.7)-(-0.4)+ (-3.3) (4)

(5) (6)(-+)×(-36)

(7) (8)—(用簡便方法計算)

查看答案和解析>>

同步練習冊答案