【題目】如圖,C是AB的中點(diǎn),∠A=∠BCE,請(qǐng)?zhí)砑右粋(gè)條件,使△ACD≌△CBE,這個(gè)添加的條件可以是_____.(只需寫一個(gè),不添加輔助線)
【答案】AD=CE或∠B=∠ACD(答案不唯一)
【解析】
要使△ACD≌△CBE,已知AC=CB,∠A=∠BCE,則可以添加一個(gè)邊從而利用SAS來(lái)判定其全等,或添加一個(gè)夾角從而利用ASA來(lái)判定其全等.
解:添加AD=CE或∠B=∠ACD.
∵C是AB的中點(diǎn),
∴AC=BC.
若添加AD=CE,
在△ACD和△CBE中,
∵AD=CE,
∠A=∠BCE,
AC=BC,
∴△ACD≌△CBE;
若添加∠B=∠ACD,
在△ACD和△CBE中,
∵∠B=∠ACD,
AD=CE,
∠A=∠BCE,
∴△ACD≌△CBE.
故答案為:AD=CE或∠B=∠ACD(答案不唯一).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在Rt△ABC中,∠ACB=90°,AB=AC,點(diǎn)D在直線AB上,連接CD,在CD的右側(cè)作CE⊥CD,CD=CE,
(1)如圖1,①點(diǎn)D在AB邊上,直接寫出線段BE和線段AD的關(guān)系;
(2)如圖2,點(diǎn)D在B右側(cè),BD=1,BE=5,求CE的長(zhǎng).
(3)拓展延伸
如圖3,∠DCE=∠DBE=90,CD=CE,BC=,BE=1,請(qǐng)直接寫出線段EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩名同學(xué)做摸球游戲,他們把三個(gè)分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個(gè)不透明的口袋中.
(1)求從袋中隨機(jī)摸出一球,標(biāo)號(hào)是1的概率;
(2)從袋中隨機(jī)摸出一球后放回,搖勻后再隨機(jī)摸出一球,若兩次摸出的球的標(biāo)號(hào)之和為偶數(shù)時(shí),則甲勝;若兩次摸出的球的標(biāo)號(hào)之和為奇數(shù)時(shí),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)動(dòng)會(huì)中裁判員使用的某品牌遮陽(yáng)傘如圖1所示,圖2是其剖面圖,若AG平分∠BAC與∠EDF,AB∥ED,求證:AC∥DF.
請(qǐng)將橫線上的證明過(guò)程和依據(jù)的定理補(bǔ)充完整.
證明:∵AB∥DE,
∴∠ =∠ ( )
∵AG平分∠BAC,AG平分∠EDF(已知)
∴∠DAC=∠DAB,∠GDF=∠GDE( ).
∴∠DAC=∠GDF( ).
∴AC∥DF( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn) M,N;②作直線 MN 交 AB 于點(diǎn) D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為
A.90°B.95°C.105°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形中,,為的中點(diǎn),連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn),連接平分.下列結(jié)論:①;②垂直平分;③;④;其中正確的是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某古城幾個(gè)地名的平面示意圖,已知民俗街和博物館的坐標(biāo)分別為點(diǎn),,請(qǐng)仔細(xì)觀察示意圖完成以下問(wèn)題.
(1)請(qǐng)根據(jù)題意在圖上建立平面直角坐標(biāo)系.
(2)在(1)的條件下,寫出圖上B,D兩地點(diǎn)的坐標(biāo).
(3)某周末甲,乙,丙,丁等4位同學(xué)分別到古城樓,民俗街,文化廣場(chǎng),博物館四個(gè)地點(diǎn)游玩,且每人只去一個(gè)地點(diǎn),老師打電話問(wèn)了趙,錢,孫,李等四位同學(xué),趙說(shuō):“甲在民俗街,乙在文化廣場(chǎng)”;錢說(shuō):“丙在博物館,乙在民俗街”;孫說(shuō):“丁在民俗街,丙在文化廣場(chǎng)”;李說(shuō):“丁在古城樓,乙在文化廣場(chǎng)”.若知道趙,錢,孫,李每人都只說(shuō)對(duì)了一半,則丙同學(xué)游玩的地點(diǎn)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點(diǎn)D點(diǎn),連接CD.
(1)求證:∠A=∠BCD;
(2)若M為線段BC上一點(diǎn),試問(wèn)當(dāng)點(diǎn)M在什么位置時(shí),直線DM與⊙O相切?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com