兩個(gè)全等的直角三角板ABC和DEF重疊在一起,∠BAC=∠EDF=30°,AC=DF=2.△ABC固定不動(dòng),將△DEF沿AC平移(點(diǎn)D在線段AC上移動(dòng)).
(1)猜想與證明:如圖①,當(dāng)點(diǎn)D為AC的中點(diǎn)時(shí),請(qǐng)你猜想四邊形BDCE的性狀,并證明結(jié)論;
(2)思考與驗(yàn)證:如圖②,連接BD,BE,CE,四邊形BDCE的形狀在不斷的變化,它的面積變化嗎?若不變,求出其面積;若變化,請(qǐng)說(shuō)明理由;
(3)操作與計(jì)算:如圖③,當(dāng)點(diǎn)D為AC的中點(diǎn)時(shí),將點(diǎn)D固定,然后再將△DEF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°,若點(diǎn)P為線段AC延長(zhǎng)線上一動(dòng)點(diǎn),求PE+PF的最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列各組圖形中,對(duì)角線互相平分且垂直的是( 。
A、平行四邊形與菱形B、矩形與正方形C、菱形與矩形D、菱形與正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在正三角系,正方形,正五邊形,正六邊形這幾個(gè)圖形中,單獨(dú)選用一種圖形不能進(jìn)行平面鑲嵌的圖形是
( 。
A、正三角形B、正方形C、正五邊形D、正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

推理證明:如圖1,在正方形ABCD和正方形CGFE中,連結(jié)DE、BG,設(shè)△DCE的面積為S1,△BCG的面積為S2,求證:S1=S2
猜想論證:如圖2,將矩形ABCD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)后得到矩形FECG,連結(jié)DE、BG,設(shè)△DCE的面積為S1,△BCG的面積為S2,猜想S1、S2的數(shù)量關(guān)系,并加以證明.
拓展探究:如圖3,在△ABC中,AB=AC=10cm,∠B=30°,把△ABC沿AC翻折到△ACE,過(guò)點(diǎn)A作AD∥CE交BC于點(diǎn)D,在線段CE上存在點(diǎn)P,使△ABP的面積等于△ACD的面積,請(qǐng)你直接寫(xiě)出CP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題情境:數(shù)學(xué)活動(dòng)課上,老師提出了一個(gè)問(wèn)題:如圖①,已知在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D為直線AB上的一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A,B重合)連接CD,以點(diǎn)C為旋轉(zhuǎn)中心,將CD逆時(shí)針旋轉(zhuǎn)90°得到CE,連接BE,試探索線段AB,BD,BE之間的數(shù)量關(guān)系.
小組展示:“希望”小組展示如下:解:線段AB,BD,BE之間的數(shù)量關(guān)系是AB=BE+BD.
證明:如圖①∵∠ACB=90°,∠DCE=90°
∴∠ACB=∠DCE
∴∠ACB=∠DCB=∠DCE-∠DCB
即∠ACD=∠BCE
∵CE是由CD旋轉(zhuǎn)得到.
∴CE=CD
則在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(依據(jù)1)
∴AD=BE(依據(jù)2)
∵AB=AD+BD
∴AB=BE+BD
反思與交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:
 

依據(jù)2:
 

(2)“騰飛”小組提出了與“希望”小組不同的意見(jiàn),認(rèn)為還有兩種情況需要考慮,你根據(jù)他們的分類情況直接寫(xiě)出發(fā)現(xiàn)的結(jié)論:
①如圖②,當(dāng)點(diǎn)D在線段AB的延長(zhǎng)線上時(shí),三條點(diǎn)段AB,BD,BE之間的數(shù)量關(guān)系是
 

②如圖③,當(dāng)點(diǎn)D在線段BA的延長(zhǎng)線上時(shí),三條線段AB,BD,BE之間的數(shù)量關(guān)系是
 

(3)如圖④,當(dāng)點(diǎn)D在線段BA的延長(zhǎng)線上時(shí),若CD=4,線段DE的中點(diǎn)為F,連接FB,求FB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,正方形ABCD與正方形AEFG的邊AB、AE(AB<AE)在一條直線上,正方形AEFG以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過(guò)程中,兩個(gè)正方形只有點(diǎn)A重合,其它頂點(diǎn)均不重合,連接BE、DG.
(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時(shí),求證:BE=DG;
(2)當(dāng)點(diǎn)C在直線BE上時(shí),連接FC,直接寫(xiě)出∠FCD的度數(shù);
(3)如圖3,如果α=45°,AB=2,AE=4
2
,求點(diǎn)G到BE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在菱形ABCD中,AC、BD相交于O,且AC:BD=1:
3
,若AB=2.則菱形ABCD的面積是(  )
A、2
3
B、
3
C、
3
2
D、
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

菱形兩條對(duì)角線長(zhǎng)分別為x,y,且面積為9,則y與x之間的函數(shù)圖象為(  )
A、B、C、D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

青島市今年5月1-5日黃金假期最高氣溫如下表所示:
日  期 1 2 3 4 5
最高氣溫(℃) 16 15 14 16 17
那么這5天的日最高氣溫的平均數(shù)和眾數(shù)分別是( 。
A、15.6,16
B、16.2,16
C、16,16
D、16,15

查看答案和解析>>

同步練習(xí)冊(cè)答案