【題目】如圖,D是等邊ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=( )

A、 B、 C、 D、

【答案】B.

【解析】

試題由折疊的性質(zhì)可得,EDF=C=60,CE=DE,CF=DF.再由BDF+ADE=BDF+BFD=120,可得ADE=BFD,又因A=B=60,根據(jù)兩角對應(yīng)相等的兩三角形相似可得AED∽△BDF,所以,設(shè)AD=a,BD=2a,AB=BC=CA=3a,再設(shè)CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,

所以,整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay,xy=3ay-2ax;把代入可得3ax-ay=3ay-2ax,所以5ax=4ay,,即,故答案選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】有三張正面分別標有數(shù)字:-1,12的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機抽出一張記下數(shù)字,放回洗勻后再從中隨機抽出一張記下數(shù)字.

(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結(jié)果;

(2)將第一次抽出的數(shù)字作為點的橫坐標x,第二次抽出的數(shù)字作為點的縱坐標y,求點(x,y)落在雙曲線上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算:(﹣12014+sin30°1+0|3|+83×0.1253

2)解不等式組: 把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角三角形ABC,AB=16cm,AC=12cm,BC=20cm.點P從點A開始以2厘米/秒的速度沿ABC的方向移動,Q從點C開始以1厘米/秒的速度沿CAB的方向移動,如果點P、Q同時出發(fā),t(秒)表示移動時間那么

1)如圖1,請用含t的代數(shù)式表示當點QAC上時,CQ= ;當點QAB上時AQ= ;

當點PAB上時,BP= ;當點PBC上時,BP=

2)如圖2,若點P在線段AB上運動,Q在線段CA上運動,QA=AP,試求出t的值

3)如圖3,P點到達C點時P、Q兩點都停止運動AQ=BP,試求出t的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象交于A(1,4)B(4,n)兩點.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)直接寫出當x0時,kx+b的解集.

(3)Px軸上的一動點,試確定點P并求出它的坐標,使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,反比例函數(shù)y的圖象與一次函數(shù)yk(x2)的圖象交點為A(32),B(x,y)

(1)求反比例函數(shù)與一次函數(shù)的解析式及B點坐標;

(2)Cy軸上的點,且滿足△ABC的面積為10,求C點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點G在對角線BD上(不與點B,D重合),GEDC于點E,GFBC于點F,連結(jié)AG.

(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;

(2)若正方形ABCD的邊長為1,AGF=105°,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x的圖象與反比例函數(shù)y═的圖象交于A,B兩點,且點A坐標為(1,m).

(1)求此反比例函數(shù)的解析式;

(2)當x取何值時,一次函數(shù)大于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某區(qū)某校為了加強對學生的安全教育工作,開展了安全知識競賽,該校在初三年級中隨機抽取了一部分同學的競賽成績,并把抽取的競賽成績分成優(yōu)、良、中、差四個等級,同時繪制了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖提供的信息解答以下問題:

1)該校在初三年級中隨機抽取了多少名同學的競賽成績?

2)求扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖;

3)若從優(yōu)等中選出兩名同學在全年級進行交流,請用列表或樹狀圖的方法求出所選兩名學生恰好是一男一女的概率.

查看答案和解析>>

同步練習冊答案