【題目】如圖,在△ABC中,ABACAD為邊BC上的中線,DEAC于點(diǎn)E

(1)請(qǐng)你寫出圖中所有與△CDE相似的三角形;

(2)AB10BC12,求EC的長(zhǎng).

【答案】(1)圖中所有與△CDE相似的三角形有△ADB,△ADC,△AED;(2)EC=3.6.

【解析】

1)由等腰三角形的性質(zhì)可知∠B=C,再證∠DEC=ADC=90°,則可得出答案;

2)先求出AC的長(zhǎng),由DCE∽△ACD,則可求出EC的長(zhǎng).

(1)ABACADBC邊上的中線,

∴∠BAD=∠CAD,ADBC,

ADBCDEAC,

∴∠AED=∠ADC90°,

∴∠BAD=∠DAC=∠EDC,

∴△AED∽△ADC,△DEC∽△ADC,

∴△DEC∽△AED,△DEC∽△ADB,

即圖中所有與△CDE相似的三角形有△ADB,△ADC,△AED;

(2)ABAC10

(1)得△DCE∽△ACD,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直立在點(diǎn)處的標(biāo)桿長(zhǎng),站立在點(diǎn)處的觀察者從點(diǎn)處看到標(biāo)桿頂、旗桿頂在一條直線上.已知,,,求旗桿高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)O在邊AB上,⊙O過點(diǎn)B

分別與邊AB,BC相交于點(diǎn)DEEFAC,垂足為F.

1)求證:直線EF是⊙O的切線;

2)當(dāng)直線DF與⊙O相切時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在正方形ABCD中、點(diǎn)EBC邊上一點(diǎn),FAB延長(zhǎng)線上一點(diǎn),且BEBF,連接AEEF、CF

1)若∠BAE18°,求∠EFC的度數(shù);

2)求證:AECF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB6BC8,點(diǎn)EBC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點(diǎn)DAC邊上一點(diǎn),連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過A(﹣4,0)、B(0,﹣4)、C(2,0)三點(diǎn)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),△AMB的面積為SS的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推進(jìn)球類運(yùn)動(dòng)的發(fā)展,某校組織校內(nèi)球類運(yùn)動(dòng)會(huì),分籃球、足球、排球、羽毛球、乒乓球五項(xiàng),要求每位學(xué)生必須參加一項(xiàng)并且只能參加一項(xiàng),某班有一名學(xué)生根據(jù)自己了解的班內(nèi)情況繪制了如圖所示的完整統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖表中提供的信息,解答下列問題:

1)圖表中 ,

2)該班參加乒乓球活動(dòng)的4位同學(xué)中,有3位男同學(xué)(分別用,表示)和1位女同學(xué)(用表示),現(xiàn)準(zhǔn)備從中選出兩名同學(xué)參加比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一圓弧形橋拱的圓心為,拱橋的水面跨度米,橋拱到水面的最大高度米.求:

橋拱的半徑;

現(xiàn)水面上漲后水面跨度為米,求水面上漲的高度為________米.

查看答案和解析>>

同步練習(xí)冊(cè)答案