【題目】閱讀下列材料:如果(x+1)2﹣9=0,那么(x+1)2﹣32=(x+1+3)(x+1﹣3)=(x+4)(x﹣2),則(x+4)(x﹣2)=0,由此可知:x1=﹣4,x2=2.根據(jù)以上材料計(jì)算x2﹣6x﹣16=0的根為( )
A.x1=﹣2,x2=8B.x1=2,x2=8
C.x1=﹣2,x2=﹣8D.x1=2,x2=﹣8
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在8×8網(wǎng)格紙中,每個(gè)小正方形的邊長(zhǎng)都為1.
(1)已知點(diǎn)A在第四象限,且到x軸距離為1,到y(tǒng)軸距離為5,求點(diǎn)A的坐標(biāo);
(2)在(1)的條件下,已知點(diǎn)B(a+1,﹣2a+10),且點(diǎn)B在第一、三象限的角平分線上,判斷△OAB的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.
(1)圖②中的陰影部分的正方形邊長(zhǎng)為 ;
(2)觀察圖②,三個(gè)代數(shù)式之間的等量關(guān)系是
;
(3)觀察圖③,你能得到怎樣的代數(shù)恒等式呢?;
(4)試畫(huà)出一個(gè)幾何圖形,使它的面積能表示.(畫(huà)在虛線框內(nèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列表格的對(duì)應(yīng)值,判斷ax2+bx+c=0 (a≠0,a,b,c為常數(shù))的一個(gè)解x的取值范圍是_____
x | 3.23 | 3.24 | 3.25 | 3.26 |
ax2+bx+c | ﹣0.06 | ﹣0.02 | 0.03 | 0.09 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:如圖(一),△ABC的周長(zhǎng)為,內(nèi)切圓O的半徑為r,連結(jié)OA、OB、OC,△ABC被劃分為三個(gè)小三角形,用S△ABC表示△ABC的面積
∵ S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=,S△OBC=,S△OCA =
∴S△ABC=++= (可作為三角形內(nèi)切圓半徑公式)
(1)理解與應(yīng)用:利用公式計(jì)算邊長(zhǎng)分為5、12、13的三角形內(nèi)切圓半徑;
(2)類(lèi)比與推理:若四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓,如圖(二))且面積為S,各邊長(zhǎng)分別為a、b、c、d,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)拓展與延伸:若一個(gè)n邊形(n為不小于3的整數(shù))存在內(nèi)切圓,且面積為S,各邊長(zhǎng)分別為a1、a2、a3、…、an,合理猜想其內(nèi)切圓半徑公式(不需說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程mx2﹣2mx+m+n=0有兩個(gè)實(shí)數(shù)根.
(1)求實(shí)數(shù)m,n需滿足的條件;
(2)寫(xiě)出一組滿足條件的m,n的值,并求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,任何一個(gè)三角形的三條內(nèi)角平分線相交于一點(diǎn),如圖,若△ABC 的三條內(nèi)角平分線相交于點(diǎn)I,過(guò)I作DE⊥AI分別交AB、AC于點(diǎn)D、E.
(1)請(qǐng)你通過(guò)畫(huà)圖、度量,填寫(xiě)右上表(圖畫(huà)在草稿紙上,并盡量畫(huà)準(zhǔn)確)
(2)從上表中你發(fā)現(xiàn)了∠BIC與∠BDI之間有何數(shù)量關(guān)系,請(qǐng)寫(xiě)出來(lái),并說(shuō)明其中的道理.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com