【題目】如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進了20米到達地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù):≈1.73,≈1.41.

【答案】約是5.3米.

【解析】

試題分析:由條件可知BE=DE=20米,再在RtBCE中,利用三角函數(shù)可求得BC的長,進而可求得AB的長.

試題解析:∵∠BEC=BDE+DBE,∴∠DBE=BEC-BDC=60°-30°=30°,∴∠BDE=DBE,BE=DE=20米.在RtBCE中,BCE=90°,sinBEC=(米),AB=BC-AC=17.3-12=5.3(米). 答:旗桿AB的高度為5.3米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________

(2)應(yīng)用:已知正方形ABCD的邊長為4,點PAD邊上的一點,AP= ,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次數(shù)學興趣小組活動中,同學們做了一個找朋友的游戲:有六個同學A、B、C、D、E、F分別藏在六張大紙牌的后面,如圖,A、B、C、D、E、F所持的紙牌的前面分別寫有六個算式:66;63+63;(633;(2×62)×(3×63);(22×323;(643÷62.游戲規(guī)定:所持算式的值相等的兩個人是朋友.如果現(xiàn)在由同學A來找他的朋友,他可以找誰呢?說說你的看法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點間的距離.(結(jié)果精確到0.1 m)(參考數(shù)據(jù): ≈1.414,、≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】安全教育平臺是中國教育學會為方便學長和學生參與安全知識活動、接受安全提醒的一種應(yīng)用軟件.某校為了了解家長和學生參與防溺水教育的情況,在本校學生中隨機抽取部分學生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:A.僅學生自己參與;B.家長和學生一起參與;

C.僅家長自己參與; D.家長和學生都未參與.

請根據(jù)圖中提供的信息,解答下列問題:

(1)在這次抽樣調(diào)查中,共調(diào)查了________名學生;

(2)補全條形統(tǒng)計圖,并在扇形統(tǒng)計圖中計算C類所對應(yīng)扇形的圓心角的度數(shù);

(3)根據(jù)抽樣調(diào)查結(jié)果,估計該校2000名學生中家長和學生都未參與的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 在正方形ABCD中.

1)如圖1,點E、F分別在BCCD上,AEBF相交于點O,∠AOB=90°,試判斷AEBF的數(shù)量關(guān)系,并說明理由;

2)如圖2,點E、FG、H分別在邊BC、CD、DA、AB上,EG、FH相交于點O,∠GOH=90°,且EG=7,求FH的長;

3)如圖3,點EF分別在BC、CD上,AE、BF相交于點O,∠AOB=90°,若AB=5,圖中陰影部分的面積與正方形的面積之比為45,求△ABO的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小華剪了兩條寬為3的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】認真閱讀下面的材料,完成有關(guān)問題.

材料:在學習絕對值時,老師教過我們絕對值的幾何含義,如表示、在數(shù)軸上對應(yīng)的兩點之間的距離;,所以表示、在數(shù)軸上對應(yīng)的兩點之間的距離;,所以表示在數(shù)軸上對應(yīng)的點到原點的距離.

一般地,點、點在數(shù)軸上分別表示有理數(shù)、,那么點、點之間的距離可表示為

1)點、在數(shù)軸上分別表示有理數(shù)、、,那么點到點的距離與點到點的距離之和可表示為__________(用含絕對值的式子表示).

2)利用數(shù)軸探究:

①滿足的取值范圍是__________.

②滿足的所有值是__________.

③設(shè),當的值取在不小于且不大于的范圍時,的值是不變的,而且是的最小值,這個最小值是_____.

3)拓展:

的最小值為__________.

的最小值為__________.

的最小值為__________,此時的取值范圍為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=aP為邊BC上一動點(不與B、C重合),E是邊BC延長線上一點,連結(jié)AP,過點PPFAP交∠DCE的平分線于點F,連結(jié)AF與邊CD交于點G,連結(jié)PG

猜想:線段PAPF的數(shù)量關(guān)系為   

探究:CPG的周長在點P的運動中是否改變?若不改變求其值.

應(yīng)用:若PGCF,當a=時,則PB=   

查看答案和解析>>

同步練習冊答案