【題目】計算下列各題
(1)計算:(﹣2)2+( ﹣1)0﹣ ﹣( )﹣1
(2)簡化( ﹣ )÷ .
【答案】
(1)解:(﹣2)2+( ﹣1)0﹣ ﹣( )﹣1
=4+1﹣2﹣2
=1;
(2)解:( ﹣ )÷
=
=
=x+2.
【解析】(1)根據(jù)冪的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪可以解答本題;(2)根據(jù)分式的減法和除法可以解答本題.
【考點精析】根據(jù)題目的已知條件,利用分式的混合運算和零指數(shù)冪法則的相關知識可以得到問題的答案,需要掌握運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當有多層括號時,先算括號內(nèi)的運算,從里向外{[(?)]};零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)).
科目:初中數(shù)學 來源: 題型:
【題目】作圖題.
(1)如圖,在圖①所給的方格紙中,每個小正方形的邊長都是1,標號為①②③的三個三角形均為格點三角形(頂點在方格的頂點處),請按要求將圖②中的指定圖形分割成三個三角形,使它們與標號為①②③的三個三角形分別對應全等(分割線畫成實線);
(2)如圖③,在邊長為1個單位長度的小正方形組成的正方形網(wǎng)格中,點都在小正方形的頂點上.
①在圖中畫出與關于直線成軸對稱的;
②請在直線上找一點,使得的距離之和最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC的長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,以大于EF長為半徑作圓弧,兩條弧交于點G,作射線AG交CD于點H,若∠C=120°,則∠AHD=( 。
A. 120° B. 30° C. 150° D. 60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE、PF分別交AB、AC于點E、F.給出以下四個結論:①AE=CF;②△EPF是等腰直角三角形;③ 2S四邊形AEPF=S△ABC;④EF=PC.上述結論正確的有 ( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將半徑為3cm,圓心角為60°的扇形紙片.AOB在直線l上向右作無滑動的滾動至扇形A′O′B′處,則頂點O經(jīng)過的路線總長 cm(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖、在三角形 ABC 中,B(2,0),把三角形 ABC 沿AC 邊平移,使 A 點到 C 點,△ABC 變換為△DCE.已知 C(0,3.5) 請寫出 A、D、E 的坐標,并說出平移的過程。(書寫時沿著 x 軸平 移,再沿著 y 軸平移。)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關部門決定降低坡度,使新坡面的坡度為1: .
(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com