【題目】如圖1,矩形ABCD的兩條邊在坐標軸上,點D與坐標原點O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個單位長度的速度運動,同時點P從A點出發(fā)也以每秒1個單位長度的速度沿矩形ABCD的邊AB經(jīng)過點B向點C運動,當點P到達點C時,矩形ABCD和點P同時停止運動,設點P的運動時間為t秒.
(1)當t=5時,請直接寫出點D、點P的坐標;
(2)當點P在線段AB或線段BC上運動時,求出△PBD的面積S關于t的函數(shù)關系式,并寫出相應t的取值范圍;
(3)點P在線段AB或線段BC上運動時,作PE⊥x軸,垂足為點E,當△PEO與△BCD相似時,求出相應的t值.
【答案】(1)D(﹣4,3),P(﹣12,8);(2);(3)6.
【解析】試題分析:(1)延長CD交x軸于M,延長BA交x軸于N,則CM⊥x軸,BN⊥x軸,AD∥x軸,BN∥DM,由矩形的性質(zhì)得出和勾股定理求出BD,BO=15,由平行線得出△ABD∽△NBO,得出比例式,求出BN、NO,得出OM、DN、PN,即可得出點D、P的坐標;
(2)當點P在邊AB上時,BP=6﹣t,由三角形的面積公式得出S=BPAD;②當點P在邊BC上時,BP=t﹣6,同理得出S=BPAB;即可得出結果;
(3)設點D(, );分兩種情況:①當點P在邊AB上時,P(, ),由和時;分別求出t的值;
②當點P在邊BC上時,P(, );由和時,分別求出t的值即可.
試題解析:(1)延長CD交x軸于M,延長BA交x軸于N,如圖1所示:則CM⊥x軸,BN⊥x軸,AD∥x軸,BN∥DM,∵四邊形ABCD是矩形,∴∠BAD=90°,CD=AB=6,BC=AD=8,∴BD==10,當t=5時,OD=5,∴BO=15,∵AD∥NO,∴△ABD∽△NBO,∴,即,∴BN=9,NO=12,∴OM=12﹣8=4,DM=9﹣6=3,PN=9﹣1=8,∴D(﹣4,3),P(﹣12,8);
(2)如圖2所示:當點P在邊AB上時,BP=6﹣t,∴S=BPAD=(6﹣t)×8=﹣4t+24;
②當點P在邊BC上時,BP=t﹣6,∴S=BPAB=(t﹣6)×6=3t﹣18;
綜上所述: ;
(3)設點 D(, );
①當點P在邊AB上時,P(, ),若時, ,解得:t=6;
若時, ,解得:t=20(不合題意,舍去);
②當點P在邊BC上時,P(, ),若時, ,解得:t=6;
若時, ,解得: (不合題意,舍去);
綜上所述:當t=6時,△PEO與△BCD相似.
科目:初中數(shù)學 來源: 題型:
【題目】“長跑“是中考體育必考項目之一,某中學為了了解九年級學生“長跑”的情況,隨機抽取部分九年級學生,測試其長跑成績(男子1000米,女子800米),按長跑時間長短依次分為A.B.C.D四個等級進行統(tǒng)計,制作出如下兩個不完整的統(tǒng)計圖.
根據(jù)所給信息,解答下列問題:
(1)在扇形統(tǒng)計用中,C對應的扇形圓心角是____度.
(2)補全條形統(tǒng)計圖.
(3)該校九年有486名學生,請估計“長跑”測試成績達到A級的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果關于的一元二次方程有兩個實數(shù)根,且其中一個根為另一個根的倍,則稱這樣的方程為“倍根方程”.以下關于倍根方程的說法,正確的是______.(寫出所有正確說法的序號)
①方程是倍根方程;
②若方程是倍根方程,則;
③若點在反比例函數(shù)的圖象上,則關于的方程是倍根方程;
④若方程是倍根方程,且相異兩點,都在拋物線上,則方程的一個根是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明去買紙杯蛋糕,售貨員阿姨說:“一個紙杯蛋糕12元,如果你明天來多買一個,可以參加打九折活動,總費用比今天便宜24元.”問:小明今天計劃買多少個紙杯蛋糕?
若設小明今天計劃買紙杯蛋糕的總價為x元,請你根據(jù)題意完善表格中的信息,并列方程解答.
單價 | 數(shù)量 | 總價 | |
今天 | 12 | x | |
明天 |
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形OABC的邊長為2,頂點A,C分別在x軸,y軸的正半軸上,點E是BC的中點,F(xiàn)是AB延長線上一點且FB=1.
(1)求經(jīng)過點O,A,E三點的拋物線解析式;
(2)點P在拋物線上運動,當點P運動到什么位置時△OAP的面積為2,請求出點P的坐標;
(3)在拋物線上是否存在一點Q,使△AFQ是等腰直角三角形?若存在直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列一段文字,然后回答下列問題:
已知平面內(nèi)兩點P1(x1,y1),P2(x2,y2),其兩點間的距離。例如:已知P(3,1),Q(1,-2),則這兩點間的距離.特別地,如果兩點M(x1,y1),N(x2,y2),所在的直線與坐標軸重合或平行于坐標軸或者垂直于坐標軸,那么這兩點間的距離公式可簡化為或。
(1)已知A(2,3),B(-1,-2),則A,B兩點間的距離為_________;
(2)已知M,N在平行于y軸的直線上,點M的縱坐標為-2,點N的縱坐標為3,則M,N兩點間的距離為_________;
(3)在平面直角坐標系中,已知A(0,4),B(4,2),在x軸上找點P,使PA+PB的長度最短,求出點P的坐標及PA+PB的最短長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上的一點,∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)若點B是EF的中點,AB=,CB=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,,,平分,平分,求的度數(shù).
(2)如果(1)中,其他條件不變,求的度數(shù).
(3)如果(1)中其他條件不變,則的度數(shù)為 .(直接寫出結果)
(4)從(1)、(2)、(3)的結果能看出的規(guī)律是:與有什么關系,與哪個角的大小無關?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com