【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一、三象限內(nèi)的、兩點,與軸交于點,點的坐標(biāo)為,.
(1)求該反比例函數(shù)和一次函數(shù)的解析式,并寫出使成立的的取值范圍;
(2)若是直線上一點,使得,求點的坐標(biāo).
【答案】(1),,的取值范圍是或;(2)的坐標(biāo)為.
【解析】
(1)先過點B作BD⊥x軸,根據(jù)已知求出點B的坐標(biāo),再代入反比例函數(shù)y2=(k≠0)中,求出反比例函數(shù)的解析式,從而求出點A的坐標(biāo),再把點A、點B的坐標(biāo)代入y1=ax+b,求出一次函數(shù)的解析式,再根據(jù)y1與y2交于(2,5)(-5,-2),求出x的取值范圍;
(2)過點B作BD⊥x軸于點D,根據(jù)點B的坐標(biāo)求出OB和BC的值,若△MBO∽△OBC,得出=,求出MD的值,設(shè)M的坐標(biāo)為(t,t+3),求出t的值,即可得出答案.
解:(1)過點作軸,
∵,
∴,
∴,
∴點的坐標(biāo)是,
∴反比例函數(shù)的解析式為:;
∴點的坐標(biāo)是,
把代入得:
,
解得:,
∴一次函數(shù)的解析式為;,
∵與交于,
∴當(dāng)時,的取值范圍是或;
(2)過點作軸于點,
∵點的坐標(biāo)為,
∴,,
若,
則,
∴,
∴,
設(shè)的坐標(biāo)為,
∴,
解得:,(舍去),
∴的坐標(biāo)為.
故答案為:(1),,的取值范圍是或;(2)的坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)商店以2元的批發(fā)價進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個定價3元,每天可以能賣出500件,而且定價每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價不能超過批發(fā)價的2.5倍.
(1)當(dāng)每個紀(jì)念品定價為3.5元時,商店每天能賣出________件;
(2)如果商店要實現(xiàn)每天800元的銷售利潤,那該如何定價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,三角形ABM與三角形ACM關(guān)于直線AF成軸對稱,三角形ABE與三角形DCE關(guān)于點E成中心對稱,點E、D、M都在線段AF上,BM的延長線交CF于點P.
(1)求證:AC=CD;
(2)若∠BAC=2∠MPC,請你判斷∠F與∠MCD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為64和42,則△EDF的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點、分別在、軸的正半軸上,點為對角線的中點,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點,且與、分別交于、兩點,若四邊形的面積為,則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,點在第一象限,軸于點,軸于點.一次函數(shù)的圖象分別交軸、軸于點、,且,,.
(1)求點的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式:
(3)根據(jù)圖象寫出當(dāng)時,一次函數(shù)的值小于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示,其中A(0,4),B(-2,2),C((-1,1),先將△ABC向右平移3個單位,再向下平移1個單位到△A1B1C1,△A1B1C1和△A2B2C2關(guān)于x軸對稱.
(1)畫出△A1B1C1和△A2B2C2,并寫出A2,B2,C2的坐標(biāo);
(2)在x軸上確定一點P,使BP+A1P的值最小,請在圖中畫出點P;
(3)點Q在y軸上且滿足△ACQ為等腰三角形,則這樣的Q點有 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于,兩點,點 是 軸上一點,沿直線 折疊 剛好落在 軸上處.
請解答下列問題:
(1),兩點的坐標(biāo)分別為_____________,____________.
(2)求的長;
(3)在軸上存在點,使三角形為等腰三角形,直接寫出的坐標(biāo)_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com