【題目】如圖,由10個(gè)完全相同的正三角形構(gòu)成的網(wǎng)格圖中, 如圖所示,則=______.

【答案】.

【解析】

給圖中各點(diǎn)標(biāo)上字母,連接DE,利用等腰三角形的性質(zhì)及三角形內(nèi)角和定理可得出∠α=30°,同理,可得出:∠CDE=CED=30°=α,由∠AEC=60°結(jié)合∠AED=AEC+CED可得出∠AED=90°,設(shè)等邊三角形的邊長(zhǎng)為a,則AE=2aDE=a,利用勾股定理可得出AD的長(zhǎng),再結(jié)合余弦的定義即可求出cosα+β)的值.

給圖中各點(diǎn)標(biāo)上字母,連接DE,如圖所示.

ABC中,∠ABC=120°,BA=BC,

∴∠α=30°

同理,可得出:∠CDE=CED=30°=α

又∵∠AEC=60°,

∴∠AED=AEC+CED=90°

設(shè)等邊三角形的邊長(zhǎng)為a,則AE=2a,DE=2×sin60°a=a,

,

cosα+β=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,M是弦與弧所圍成的圖形的內(nèi)部的一個(gè)定點(diǎn),P是弦上一動(dòng)點(diǎn),連接并延長(zhǎng)交弧于點(diǎn)Q,連接

已知,設(shè)A,P兩點(diǎn)間的距離為,P,Q兩點(diǎn)間距離為,兩點(diǎn)間距離為

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)隨自變量x的變化而變化的規(guī)律進(jìn)行了研究.下面是小明的探究過程,請(qǐng)補(bǔ)充完整.

1)按照如表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了x的幾組對(duì)應(yīng)值,補(bǔ)全下表:

0

1

2

3

4

5

6

5.24

4.24

3.24

1.54

1.79

3.47

1.31

1.34

1.42

1.54

1.80

2.45

3.47

2)在同一平面直角坐標(biāo)系中,描出表中各組數(shù)值對(duì)應(yīng)的點(diǎn)并畫出函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)為等腰三角形時(shí),的長(zhǎng)度約_________.(精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師把微信運(yùn)動(dòng)里好友計(jì)步榜排名前20的好友一天行走的步數(shù)做了整理,繪制了如下不完整的統(tǒng)計(jì)圖表:

組別

步數(shù)分組

頻率

A

x6000

0.1

B

6000≤x7000

0.5

C

7000≤x8000

m

D

x≥8000

n

合計(jì)

1

根據(jù)信息解答下列問題:

1)填空:m  ,n  ;并補(bǔ)全條形統(tǒng)計(jì)圖;

2)這20名朋友一天行走步數(shù)的中位數(shù)落在  組;(填組別)

3)張老師準(zhǔn)備隨機(jī)給排名前4名的甲、乙、丙、丁中的兩位點(diǎn)贊,請(qǐng)求出甲、乙被同時(shí)點(diǎn)贊的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在數(shù)學(xué)實(shí)踐活動(dòng)課中測(cè)景路燈的高度,如圖,已知她的目高AB1.5米,街為站在A處看路燈頂端P的仰角為30°.再往前走2米站在C處,看路燈頂端P的仰角為45°,求路燈頂端P到地面的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】云崗石窟位于山西大同市,是中國(guó)規(guī)模最大的古代石窟群之一,位于第五窟的三世佛的中央坐像是云岡石窟最大的佛像.某數(shù)學(xué)課題研究小組針對(duì)“三世佛的中央坐像的高度有多少米”這一問題展開探究,過程如下:

問題提出:

如圖①是三世佛的中央坐像,請(qǐng)你設(shè)計(jì)方案并求出它的高度.

方案設(shè)計(jì):

如圖②,該課題研究小組通過研究設(shè)計(jì)了這樣一個(gè)方案,某同學(xué)在處用測(cè)角器測(cè)得佛像最高處的仰角,另一個(gè)同學(xué)在他的后方處測(cè)得佛像底端的仰角

數(shù)據(jù)收集:

通過查閱資料和實(shí)際測(cè)量:佛像底端到觀景臺(tái)的垂直距離

問題解決:

1)根據(jù)上述方案及數(shù)據(jù),求佛像的高度;(結(jié)果保留整數(shù),參考數(shù)據(jù):,,,

2)在實(shí)際測(cè)量的過程中,有哪些措施可以減小測(cè)量數(shù)據(jù)產(chǎn)生的誤差?(寫出一條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線 相交于和點(diǎn)兩點(diǎn).

⑴求拋物線的函數(shù)表達(dá)式;

⑵若點(diǎn)是位于直線上方拋物線上的一動(dòng)點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);

⑶在拋物線的對(duì)稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx2的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)D的坐標(biāo)為(﹣1,0),二次函數(shù)yax2+bx+ca≠0)的圖象經(jīng)過AB,D三點(diǎn).

1)求二次函數(shù)的解析式;

2)如圖1,已知點(diǎn)G1m)在拋物線上,作射線AG,點(diǎn)H為線段AB上一點(diǎn),過點(diǎn)HHEy軸于點(diǎn)E,過點(diǎn)HHFAG于點(diǎn)F,過點(diǎn)HHMy軸交AG于點(diǎn)P,交拋物線于點(diǎn)M,當(dāng)HEHF的值最大時(shí),求HM的長(zhǎng);

3)在(2)的條件下,連接BM,若點(diǎn)N為拋物線上一點(diǎn),且滿足∠BMN=∠BAO,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mx+nx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A1,0),C0,2).

1)求拋物線的表達(dá)式;

2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由;

3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Ex軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019423日是第二十四個(gè)世界讀書日.某校組織讀書征文比賽活動(dòng),評(píng)選出一、二、三等獎(jiǎng)若干名,并繪成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中信息解答下列問題:

1)求本次比賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中二等獎(jiǎng)所對(duì)應(yīng)扇形的圓心角度數(shù);

3)學(xué)校從甲、乙、丙、丁4位一等獎(jiǎng)獲得者中隨機(jī)抽取2人參加世界讀書日宣傳活動(dòng),請(qǐng)用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案