【題目】某校部分男生分3組進(jìn)行引體向上訓(xùn)練.對(duì)訓(xùn)練前后的成績(jī)進(jìn)行統(tǒng)計(jì)分析,相應(yīng)數(shù)據(jù)的統(tǒng)計(jì)圖如下.
(1)求訓(xùn)練后第一組平均成績(jī)比訓(xùn)練前增長(zhǎng)的百分?jǐn)?shù);
(2)小明在分析了圖表后,聲稱他發(fā)現(xiàn)了一個(gè)錯(cuò)誤:“訓(xùn)練后第二組男生引體向上個(gè)數(shù)沒(méi)有變化的人數(shù)占該組人數(shù)的50%,所以第二組的平均成績(jī)不可能提高3個(gè)這么多.”你同意小明的觀點(diǎn)嗎?請(qǐng)說(shuō)明理由;
(3)你認(rèn)為哪一組的訓(xùn)練效果最好?請(qǐng)?zhí)峁┮粋(gè)解釋來(lái)支持你的觀點(diǎn).
【答案】
(1)解:訓(xùn)練后第一組平均成績(jī)比訓(xùn)練前增長(zhǎng)的百分?jǐn)?shù)是
×100%≈67%
(2)解:我不同意小明的觀點(diǎn),
設(shè)第二組男生的人數(shù)為x人,
第二組的平均成績(jī)?cè)黾樱?×10%x+6×20%x+5×20%x+0×50%x)÷x=3個(gè).
故不同意小明的觀點(diǎn)
(3)解:本題答案不唯一,下列解法供參考.
我認(rèn)為第一組的訓(xùn)練效果最好;
訓(xùn)練后每組的平均成績(jī)比訓(xùn)練前增長(zhǎng)的百分?jǐn)?shù)分別為:
第一組: ×100%≈67%,
第二組: ×100%=50%,
第三組: ×100%≈22%,
訓(xùn)練后第一組的平均成績(jī)比訓(xùn)練前增長(zhǎng)的百分?jǐn)?shù)最大,所以第一組的訓(xùn)練效果最好
【解析】(1)用訓(xùn)練后的成績(jī)減去訓(xùn)練前的成績(jī)除以訓(xùn)練前的成績(jī)乘以100%即可;(2)求出第二組的平均成績(jī)?cè)黾拥膫(gè)數(shù)與小明的說(shuō)法相比較即可作出判斷;(3)可以從訓(xùn)練前后成績(jī)?cè)鲩L(zhǎng)的百分?jǐn)?shù)去分析,也可以通過(guò)個(gè)數(shù)比較.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解扇形統(tǒng)計(jì)圖(能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況),還要掌握條形統(tǒng)計(jì)圖(能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:經(jīng)過(guò)三角形的一個(gè)頂點(diǎn)的線段把三角形分成兩個(gè)小三角形,如果其中一個(gè)三角形是等腰三角形,另外一個(gè)三角形和原三角形的三個(gè)內(nèi)角分別相等,那么把這條線段定義為原三角形的“和諧分割線”.例如如圖1:等腰直角三角形斜邊上的中線就是一條“和諧分割線”.
(1)判斷(對(duì)的打“√”,錯(cuò)的打“×”)
①等邊三角形不存在“和諧分割線”
②如果三角形中有一個(gè)角是另一個(gè)角的兩倍,則這個(gè)三角形必存在“和諧分割線”
(2)如圖2,Rt△ABC,∠C=90°,∠B=30°,AC=2,請(qǐng)畫(huà)出“和諧分割線”,并計(jì)算“和諧分割線”的長(zhǎng)度;
(3)如圖3,線段CD是△ABC的“和諧分割線”,∠A=42°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AM切⊙O于點(diǎn)A,BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某數(shù)學(xué)課外活動(dòng)小組測(cè)量電視塔AB的高度.他們借助一個(gè)高度為30m的建筑物CD進(jìn)行測(cè)量,在點(diǎn)C處測(cè)得塔頂B的仰角為45°,在點(diǎn)E處測(cè)得B的仰角為37°(B、D、E三點(diǎn)在一條直線上).求電視塔的高度h.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三(1)班 名學(xué)生需要參加體育“五選一”自選項(xiàng)目測(cè)試,班上學(xué)生所報(bào)自選項(xiàng)目的情況統(tǒng)計(jì)表如下:
自選項(xiàng)目 | 人數(shù) | 頻率 |
立定跳遠(yuǎn) | 9 | 0.18 |
三級(jí)蛙跳 | 12 | |
一分鐘跳繩 | 8 | 0.16 |
投擲實(shí)心球 | 0.32 | |
推鉛球 | 5 | 0.1 |
合計(jì) | 50 | 1 |
(1)求 的值;
(2)若將各自選項(xiàng)目的人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖,求“一分鐘跳繩”對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)在選報(bào)“推鉛球”的學(xué)生中,有3名男生,2名女生.為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機(jī)抽取兩名學(xué)生進(jìn)行推鉛球測(cè)試,求所抽取的兩名學(xué)生中至多有一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)O是正方形OABC的一個(gè)頂點(diǎn),已知點(diǎn)B坐標(biāo)為(1,7),過(guò)點(diǎn)P(a,0)(a>0)作PE⊥x軸,與邊OA交于點(diǎn)E(異于點(diǎn)O、A),將四邊形ABCE沿CE翻折,點(diǎn)A′、B′分別是點(diǎn)A、B的對(duì)應(yīng)點(diǎn),若點(diǎn)A′恰好落在直線PE上,則a的值等于( )
A.
B.
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請(qǐng)標(biāo)明字母) ①作線段AC的垂直平分線l,交AC于點(diǎn)O;
②連接BO并延長(zhǎng),在BO的延長(zhǎng)線上截取OD,使得OD=OB;
③連接DA、DC
(2)判斷四邊形ABCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)C(3,0),函數(shù)y= (k>0,x>0)的圖象經(jīng)過(guò)OABC的頂點(diǎn)A(m,n)和邊BC的中點(diǎn)D.
(1)求m的值;
(2)若△OAD的面積等于6,求k的值;
(3)若P為函數(shù)y═ (k>0,x>0)的圖象上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l⊥x軸于點(diǎn)M,直線l與x軸上方的OABC的一邊交于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為t,當(dāng) 時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com